
- •8. Молекулярно – кинетическая теория строения вещества
- •8.1. Молекулярно-кинетическая теория
- •8.2. Модель идеального газа. Основное уравнение состояния идеального газа
- •8.3. Основное уравнение кинетической теории газов
- •8.4. Молекулярно-кинетическая трактовка абсолютной температуры
- •8.5.Основные газовые законы молекулярно кинетической теории
- •8.5.1. Закон Бойля-Мариотта
- •8.5.2. Закон Гей-Люссака
- •8.5.3. Закон Шарля
- •8.5.4. Объединенный газовый закон Мариотта-Гей-Люссака
- •8.5.4. Закон Дальтона
- •9. Некоторые вопросы статистической физики
- •9.1. Распределение энергии по степеням свободы Число степеней свободы молекулы. Теорема Больцмана
- •9.2. Вероятность и флюктуации. Скорости теплового движения частиц
- •9.3. Распределение молекул (частиц) по скоростям.
- •Средняя длина свободного пробега молекул
- •9.4. Экспериментальное подтверждение молекулярно-кинетической теории газов (опыт Штерна)
- •9.5.Средняя длина свободного пробега молекул
- •9.6. Распределение Больцмана. Барометрическая формула
- •Внутренняя энергия. Первое начало термодинамики
- •9.8. Теплоёмкость газа. Уравнение Роберта Майера. Классическая теория теплоёмкостей
- •10. Элементы термодинамики
- •10.1. Первое начало термодинамики и его применение к изопроцессам в идеальных газах
- •10.1.1. Изохорный процесс
- •10.1.2. Изобарный процесс
- •10.1.3. Изотермический процесс
- •10.1.4. Адиабатический процесс
- •1 0.1.5. Работа и теплоёмкость при адиабатном процессе.
- •10.2. Основное уравнение термодинамики идеального газа. Энтропия.
- •10.3. Обратимые, необратимые и круговые процессы (циклы)
- •10.4. Цикл Карно. Максимальный кпд тепловой машины
- •10.5. Тепловая машина, работающая по циклическому принципу. Перпетум мобиле второго рода
- •10.6. Второе начало термодинамики
- •10.7. Третье начало термодинамики (теорема Нернста)
- •11. Реальные газы
- •11.1. Реальные газы. Молекулярные силы
- •11.2.Уравнение Ван-дер-Ваальса
- •11.3. Изотермы Ван-дер-Ваальса
- •12.2. Диффузия и теплопроводность. Коэффициенты диффузии и теплопроводности
- •13. Элементы механики сплошных сред
- •13.1. Строение жидкостей
- •13.2. Свойства жидкостей (вязкость, текучесть, сжимаемость и тепловое расширение)
- •13.3. Поверхностное натяжение. Энергия поверхностного слоя жидкости
- •13.4. Давление под искривлённой поверхностью жидкости. Формула Лапласа
- •13.5. Поверхностные явления на границе раздела двух жидкостей или жидкости и твердого тела
- •13.6. Капиллярные явления. Закон Жюрена
- •13.7. Жидкие кристаллы, их строение и свойства
- •13.8. Магнитные жидкости
- •1 3.8.1. Структура магнитных жидкостей
- •13.8.2. Получение магнитных жидкостей
- •13.8.3. Свойства магнитных жидкостей
- •13.8.4. Применение магнитных жидкостей
- •13.9. Кристаллическое состояние
- •13.9.1. Отличительные черты кристаллического состояния
- •13.9.2 Физические типы кристаллических решеток
МИНОБРНАУКИ РОССИИ
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«ЮгоЗападный государственный университет»
ФИЗИКА
Конспект лекций
по молекулярной физике
и термодинамике
для студентов инженерно-технических специальностей
2011
Лекция 8
(Молекулярная физика и термодинамика. Молекулярно – кинетическая теория. Уравнение состояния. Модель идеального газа. Основное уравнение состояния идеального газа. Основное уравнение кинетической теории газов. Молекулярно-кинетический смысл абсолютной температуры. Основные газовые законы. Внутренняя энергия.)
8. Молекулярно – кинетическая теория строения вещества
Молекулярная физика представляет собой раздел физики, в котором изучаются физические свойства и строение вещества в различных агрегатных состояниях, на основе их микроскопического (молекулярного) строения. В молекулярной физике хаотическое движение совокупности молекул качественно отличается от механического движения и подчиняется статистическим закономерностям. Одним из понятий статистической физики является вероятность.
Термодинамика - наука о наиболее общих свойствах макроскопических физических систем, находящихся в состоянии термодинамического равновесия, и о процессах перехода между этими состояниями. Термодинамика исследует условия превращения энергии из одного вида в другой и характеризует их с количественной стороны. В ее основе лежат фундаментальные законы (начала).
8.1. Молекулярно-кинетическая теория
Молекулярно-кинетическая теория газов основывается на небольшом числе общих представлений, важнейшими из которых являются:
1) газ состоит из мельчайших частиц - атомов или молекул, находящихся в непрерывном движении;
2) в любом, даже очень малом объёме, к которому применимы выводы молекулярно-кинетической теории, число молекул очень велико;
3) размеры молекул малы, по сравнению с расстояниями между ними;
4) молекулы газа свободно движутся между двумя последовательными взаимодействиями друг с другом или со стенками сосуда, в котором он находится. Силы взаимодействия между молекулами, кроме моментов соударения, пренебрежимо малы. Соударения молекул происходят без потерь механической энергии, т.е. по закону абсолютно упругого удара;
5) при отсутствии внешних сил молекулы газа распределяются равномерно по всему объёму;
6) направления и значения скоростей молекул газа самые различные.
Эти положения подтверждаются такими явлениями как:
а) высокой сжимаемостью газов;
б) диффузией в газах, жидкостях и твердых телах;
в) смешением жидкостей и растворением в них других веществ;
г) наличием давления, оказываемого газами;
д) броуновским движением.
В зависимости от состояния система может обладать различными свойствами. Состояние системы характеризуется параметрами состояния.
К ним относятся: p-давление, V- объём, T-температура. Параметры состояния связаны между собой функциональной зависимостью
F(p,V,T) = 0. (1)
Выражение (1) называется уравнением состояния.
Если какой-то параметр системы изменяется, то в этом случае состояние системы называется неравновесным. Равновесным состоянием системы называется такое, при котором все параметры системы имеют определённые значения, остающиеся постоянными при неизменных внешних условиях.
Под внутренней энергией системы понимается кинетическая энергия хаотического движения молекул, потенциальная энергия их взаимодействия и внутримолекулярная энергия, т.е. энергия системы без учёта кинетической энергии её в целом (при движении) и потенциальной энергии во внешнем поле. Внутренняя энергия является функцией состояния.
Изменение внутренней энергии при переходе системы из состояния в состояние равно разности значений внутренней энергии в этих состояниях. и не зависит от пути перехода системы из одного состояния в другое.