Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методы получения тонких пленок.doc
Скачиваний:
51
Добавлен:
27.09.2019
Размер:
109.57 Кб
Скачать

2. Получение тонких пленок распылением материалов ионной бомбардировкой.

Распыление – это явление передачи момента импульса от налетающей частицы частицам поверхности мишени с последующим отрывом атомов или молекул и переводом их в вакуум.

Ионное распыление – метод вакуумного напыления, в котором осаждаемый атомарный поток получают в результате бомбардировки ускоренными ионами поверхности исходного напыляемого материала и последующей инжекции распыленных атомов в газовую фазу.

Характер взаимодействия бомбардирующих ионов с поверхностью твердого тела определяется их энергией. При энергиях меньших 5 эВ, взаимодействие ограничивается физически и химически адсорбированными слоями, вызывая их десорбцию и обуславливая протекание различных химических реакций. При кинетических энергиях, превышающих энергию связи атомов в кристаллической решетке, бомбардировка вызывает разрушение приповерхностного слоя и выброс атомов в газовую фазу (распыление). Минимальная энергия ионов, приводящая к выбиванию атомов с поверхности, называется пороговой энергией распыления. Значение ее находится в интервале энергий от 15 до 30 эВ.

Характеристикой процесса ионного распыления служит коэффициент распыления, определяемый количеством атомов, выбитых с бомбардируемой поверхности падающим ионом. При возрастании энергии бомбардирующих ионов свыше 100 эВ коэффициент распыления резко увеличивается и в области 5-10 кэВ выходит на насыщение. Дальнейшее повышение кинетической энергии свыше 100 кэВ приводит к снижению распыления, вызванному радиационными эффектами и внедрениями ионов в кристаллическую решетку. Распыление вызывается, в основном, передачей импульса энергии от бомбардирующей частицы атомам кристаллической решетки в результате серии последовательных столкновений. Передача импульса от падающих ионов происходит в первых атомных слоях решетки. Например, при бомбардировке поверхности поликристаллической меди ионами аргона с энергией 1000 эВ глубина проникновения равнялась трем атомным слоям.

Наибольшее распространение в качестве источника бомбардирующих ионов получил инертный газ аргон, имеющий массу, достаточную для распыления, и характеризующийся относительно малой стоимостью. В установках поток распыленных атомов создается либо в результате бомбардировки ионами плазменного разряда поверхности исходного напыляемого материала, находящегося под отрицательным потенциалом или являющегося катодом тлеющего разряда (ионно-плазменное распыление, разновидностями которого являются катодное, магнетронное распыления), либо за счет бомбардировки ускоренными ионами, эмитированными автономным источником (ионно-лучевое распыление).

Катодное распыление

В этом методе осаждения тонких пленок материал, который должен напыляться, используется в качестве катода в системе с тлеющим разрядом в инертном газе .Подложка, на которую нужно осадить пленку, располагается на аноде. Вакуумный объем, содержащий анод и катод, откачивают до давления 10-4 Па, после чего производят напуск инертного газа (обычно это Ar при давлении 1-10 Па). Для зажигания тлеющего разряда между катодом и анодом подается высокое напряжение 1-10 кВ. Положительные ионы газа, источником которых является плазма тлеющего разряда, ускоряются в электрическом поле по направлению к катоду и достигают его с большой энергией, возрастание которой происходит в прикатодной области (рис. ). В результате ионной бомбардировки материал с катода распыляется главным образом в виде нейтральных атомов, но частично и в виде ионов. Распыленное вещество конденсируется на всей окружающей площади, в том числе на подложках, расположенных на аноде. Скорость процесса напыления определяется удельной мощностью у поверхности мишени, размером зоны эрозии, расстоянием мишень-подложка, материалом мишени и давлением рабочего газа. Необходимо также учитывать тот факт, что для предотвращения растрескивания, сублимации или плавления мишень охлаждается по системе каналов в катоде. Поэтому для поддержания оптимальной температуры получения тонкопленочных покрытий необходимо найти оптимальную скорость подачи охладителя (что чаще всего обычная вода).

Достоинства метода: простота, легкость изготовления мишеней.

Недостатки метода: низкая скорость напыления, разогрев подложки из-за бомбардирования ее поверхности частицами, маленькие площади напыления.