Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие ЗЛС.doc
Скачиваний:
56
Добавлен:
17.09.2019
Размер:
2.06 Mб
Скачать

3.1.2. Грохочение и классификация

При дроблении твердых отходов степень измельчения материалов различна. Она зависит от твердости, хрупкости и первоначальной формы куска. После каждой стадии дробления часть материала может оказаться мельче заданного размера и будет лишней нагрузкой для очередной дробильной машины. Поэтому перед дроблением и между остальными его стадиями материал сортируют по размерам на классы, применяя для этого просеивающие аппараты.

Для разделения кусковых и сыпучих материалов на фракции применяют различные способы:

  • просеивание или грохочение;

  • разделение под действием гравитационно-инерционных сил;

  • разделение под действием гравитационно-центробежных сил.

В первом случае разделение на фракции осуществляется путем использования различных конструкций сит, решеток и грохотов. Во втором и третьем случаях разделение измельченных продуктов на классы или выделение целевого продукта осуществляется методом раздельного высаживания частиц из несущей среды под действием гравитационно-инерционных или гравитационно-центробежных сил. В качестве несущей среды при сухом измельчении чаще всего применяют воздух, реже дымовые или инертные газы, а при мокром — воду. Разделение сыпучих материалов под действием гравитационно-инерционных сил производится в газовых осадителях и гидравлических классификаторах, а под действием гравитационно-центробежных сил — в сепараторах циклонного типа, с вращающимися лопастями и т.п.

Разделение крупных и средних по размерам кусков производится на грохотах, мелкого - на грохотах и в классификаторах, тонкого - преимущественно в классификаторах.

Материал, не прошедший через отверстия грохота, называют верхним классом (надрешетным продуктом) и обозначают знаком «плюс». Соответственно материал, прошедший через отверстия грохота, называют нижним классом (подрешетным продуктом, просевом) и обозначают знаком «минус». Грохочение обычно применяют для разделения продуктов крупностью 1 мм и более, хотя есть случаи его использования для выделения более тонких классов (до 0,06 мм).

Различают предварительное (перед дроблением), контрольное (на промежуточных стадиях) и окончательное (сортировку) грохочение. Цикл с контрольным грохочением и возвратом отсева в дробилку называют замкнутым, а без контрольного грохочения - открытым. Продукт, возвращаемый в дробилку, называют циркуляционной нагрузкой, величина которой может достигать 50…100 % от основного питания дробилки. Замкнутый цикл более сложен и дорог, но обеспечивает равномерный по крупности продукт. В открытом цикле около 20…30% кусков крупнее заданного размера щели.

Работа грохота характеризуется коэффициентом эффективности, представляющим отношение массы отделенного нижнего класса к его массе в исходном материале, поступившем на грохот.

Просеивающие поверхности имеют различные конструкции. Для грохочения крупных кусков размерами 200 мм обычно используют плетеные и струнные сита из проволоки или нитей.

Площадь живого сечения грохота, т.е. отношение площади отверстий к площади всего сита, составляет для штампованных сит 25…50%, плетеных - до 75%.

Конструкции грохотов чрезвычайно многообразны.

Колосниковые грохота наиболее просты и дешевы. Они состоят из наклоненных под углом параллельных колосников, расстояние между которыми (прозор) обычно не меньше 25 мм. Этот тип грохотов может быть подвижным и неподвижным.

В неподвижном исполнении угол установки грохотов (45…50о) превышает угол естественного откоса материала, поэтому последний свободно скользит вдоль колосников под действием собственного веса, и мелкая часть его проваливается между колосниками. Коэффициент полезного действия неподвижных грохотов около 60%.

Подвижные колосниковые грохота имеют приводы, сообщающие колосниковым решеткам колебательные движения, обеспечивающие продвижение материала и при небольшом уклоне, а также более интенсивное (на 90…95%) отделение нижнего класса. Их часто используют в качестве питания для равномерной загрузки дробилок материалом при производительности до 300 т/ч. Колосниковые грохота применяют обычно до и после крупного дробления.

Виброгрохот представляет собой металлическую сетку, натянутую на раму, установленную под углом меньше угла естественного откоса. Колебания ему придают различного типа механизмы. Частота колебаний составляет 15…50 с-1 при амплитуде от 25 до 0,5 мм, интенсивность его работы значительно выше, чем интенсивность работы колосников. Виброгрохота устанавливают после стадий среднего и мелкого дробления.

Барабанный грохот представляет собой сортировочную сетку в виде барабана, вращающуюся вокруг оси и составляющую небольшой угол с горизонталью. Для одновременного выделения различных классов крупности концентрически устанавливают несколько сеток с ячейками разного размера. Барабаны могут иметь форму цилиндра, конуса, призмы, усеченных конуса или пирамиды.

Барабанные грохота уравновешиваются, вращаются медленно, в меньшей степени передают вибрацию на опоры, поэтому их можно устанавливать на межэтажных перекрытиях и на бункерах. Вместе с тем они громоздки, так как в каждый момент времени используется не более 20% общей площади просеивающей поверхности. Производительность барабанного грохота достигает 100 т/ч.:

Валковые грохота представляют собой набор параллельно расположенных друг от Друга валков, имеющих эксцентрические диски или винтовые выступы и вращающихся в одном направлении. При вращении валков материал переносится с одного валка на другой и просеивается. При длине и диаметре валков 2500 1500 м, границе разделения ±250 мм, коэффициенте эффективности 85…90% производительность валкового грохота может достигать 2000 т/ч.

Грохочение мало пригодно для тонких (измельченных) материалов, так как они агрегируют (комкуются), снижая коэффициент эффективности грохота, легко распыливаются. Эти материалы разделяют по крупности в воздушной (воздушная сепарация) или в водной (гидравлическая классификация) средах с использованием соответствующих аппаратов.

Сепараторы с вертикальным и горизонтальным перемещением газов относят к числу гравитационных, в центробежных сепараторах реализуется спиральное движение воздушного потока.

Сепаратор с вертикальным воздушным потоком состоит из камеры, в которую снизу по трубе подается пылевоздушная смесь со скоростью, превышающей скорость витания (оседания) наиболее мелких частиц. Поскольку площадь поперечного сечения камеры в несколько раз больше, чем сечение трубы, то скорость восходящего потока во столько же раз снижается и становится недостаточной для удержания крупных частиц. Они осаждаются и разгружаются через низ камеры. Мелкие частицы продолжают движение с воздушным потоком и выносятся через верх камеры в осадительное устройство.

Сепаратор с горизонтальным воздушным потоком имеет несколько рядом расположенных камер, над которыми движется пылевоздушная смесь, поступающая из трубопровода. Крупные частицы попадают в ближний бункер, мелкие - в последующие, а наиболее дисперсные выносятся из камеры и осаждаются в специальных устройствах.

В центробежном дисковом сепараторе материал из бункера по трубе поступает на быстровращающийся диск и под действием центробежных сил веером разбрасывается с него. При этом более крупные частицы попадают в удаленные от оси вращения концентрические желоба, а мелкие - в ближайшие и раздельно из них удаляются.

Современные конструкции таких сепараторов имеют диаметр до 4 м и производительность до 10 т/ч. Их применение экономически целесообразно для частиц менее 100 мкм. Поэтому их широко используют в замкнутом цикле с напольными агрегатами, особенно в сочетании с подсушкой сепарируемого продукта, что достаточно распространено, например, в технологии вяжущих веществ и строительных материалов. Коэффициент эффективности работы сепараторов составляет 65…80%.

Гидравлическая классификация получила весьма широкое распространение в обогащении руд черных и цветных металлов, в химической промышленности. Как и воздушные сепараторы, гидравлические классификаторы по характеру действующих сил можно разделить на гравитационные и центробежные.

Принцип работы гидравлических классификаторов гравитационного действия основан на том, что пульпа поступает в емкости той или иной формы (корыто, чан), в которых крупные частицы (пески) оседают, а тонкие (шламы) уходят через борт емкости (слив). Разделение на слив и пески можно производить как в горизонтальном, так и в вертикальном потоках.

Наиболее распространены реечные, спиральные и конусные классификаторы.

Реечный классификатор имеет наклоненное под углом 10…15° прямоугольное стальное корыто с плоским днищем. Пульпа подается по желобу с одного конца корыта и сливается с противоположного через порог, высоту которого можно изменять. Пески, осевшие на дно корыта, постепенно перемещаются гребком к приподнятому его концу, частично обезвоживаются и выгружаются. Ширина и длина классификаторов достигают 3 8,5 м, крупность слива может составлять 0,59…0,074 мм при соответствующем проценте твердого в нем равном 33…10 и скорости гребков 1 м/мин. Обычная эффективность классификации 85…95%.

Спиральный классификатор отличается от реечного полукруглым сечением корыта. Для удаления песков служит шнек (спираль). Спиральный классификатор проще и более надежен в работе, чем реечный. При диаметре спирали 300…1000 мм суточная производительность одновального классификатора составляет 6…190 т по сливу и 25…465 т по пескам, а двухвального - соответственно 1100 и 18500 т.

Конусный классификатор представляет собой конус, обращенный вершиной вниз. Пески собираются в вершине конуса и выгружаются через затвор. Питание подается на зеркало пульпы по оси конуса, слив уходит в кольцевой желоб. Диаметр основания конуса составляет 1,0…2,5 м. Основные преимущества конусных классификаторов - их простота и отсутствие энергопотребления, недостатки - налипание материалов на стенках, грубое разделение материалов по крупности, потребность в значительной высоте.

В ряде случаев на смену классификаторам гравитационного действия приходят центробежные классификаторы (гидроциклоны и центрифуги), значительно более производительные и компактные, по устройству аналогичные аппаратам пылеулавливания, очистки сточных вод и в данном курсе не рассматриваемые.

Гидроциклоны используют для классификации частиц размером 10…500 мкм. При диаметре корпуса 1 м и конусности 20 они обеспечивают производительность по пульпе до 600 т/ч.

Центрифуги изготавливают с большим диаметром конического барабана и его длиной соответственно 1000 и 1500 мм при производительности по пульпе 150 м3/ч, по твердому - 55 т/ч.