- •Требования к оформлению контрольной работы по математике
- •Литература
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
- •Задания для контрольной работы по математике
Задания для контрольной работы по математике
Задача 1. В партии из 47 кронштейнов передних рессор имеется восемь неисправных. Найти вероятность того, что выбранные три кронштейна передних рессор являются неисправными.
Задача 2. В партии из одинаковых по внешнему виду изделий смешаны 5 изделий I-го сорта и 7 изделий II-го сорта. Случайным образом вынимают 5 изделий. Найти вероятность того, что среди них имеется: а) 4 изделия I-го сорта; б) меньше, чем 4 изделия I-го сорта; в) хотя бы одно изделие I-го сорта.
Задача 3. Оптовая база снабжает товаром 5 магазинов. Вероятность того, что в течение дня поступит заявка на товар, равна 0,39 для каждого магазина. Найти вероятность того, что в течение дня: а) поступит 4 заявки; б) не менее 1 и не более 3 заявок; в) поступит хотя бы одно заявка.
Задача 4. Магазин получил две равные по количеству партии одноименного товара. Известно что, 42% первой партии и 29% второй партии составляют товар первого сорта. Какова вероятность того, что наугад выбранная единица товара будет не первого сорта?
Задача 5. В пирамиде стоят 10 винтовок, из них 4 с оптическим прицелом. Стрелок, стреляя из винтовки с оптическим прицелом, может поразить мишень с вероятностью 0,85, а стреляя из винтовки без оптического прицела, - с вероятностью 0,50. Найти вероятность того, что стрелок поразит мишень, стреляя из случайно взятой винтовки.
Задача 6. На трех станках при одинаковых и независимых условиях изготавливаются детали одного наименования. На первом станке изготавливают 36%, на втором – 42%, на третьем – 22% всех деталей. Вероятность каждой детали быть бездефектной равна 0,72, если она изготовлена на первом станке, 0,65 – если она изготовлена на втором станке, и 0,83 – если на третьем. Найти вероятность того, что наугад взятая деталь окажется бездефектной.
Задача 7. В первом ящике 3 стандартных и 3 нестандартных изделия, а во втором ящике – 6 стандартных и 7 нестандартных изделий. Из первого ящика случайным образом вынимают 1 изделие и опускают его во второй ящик. После этого из второго ящика контролер ОТК вынимает 3 изделия. Найти вероятность того, что все изделия вынутые из второго ящика будут стандартные.
Задача 8. Техническое устройство, состоящее из трех узлов, работало в течение времени Т. За это время, первый узел работает безотказно с вероятностью 0,959; второй - 0,859, третий с вероятностью - 0, 809 . Составить закон распределения случайной величины Х – «числа отказавших узлов за время работы технического устройства». Найти ее числовые характеристики; построить многоугольник распределения
Задача 9. Предприятие выпускает три вида продукции, используя сырье трех видов. Потребное количество единиц каждого вида сырья на изготовление единицы продукции каждого вида продукции даны в таблице. Составить экономико-математическую модель задачи [составить систему алгебраических уравнений]. Определить объем выпуска продукции каждого вида при заданных запасах сырья, полученную систему решить методом Крамера.
Вид сырья |
Нормы расхода сырья на изготовление одной единицы продукции,,, усл.ед. |
Запасы сырья |
||
P1 |
P2 |
P3 |
|
|
S1 |
2 |
3 |
2 |
24 |
S2 |
3 |
5 |
2 |
36 |
S3 |
1 |
1 |
8 |
18 |
ВАРИАНТ 20.