Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ZadachiKOLEBANIYa_VOLN.doc
Скачиваний:
10
Добавлен:
22.08.2019
Размер:
537.09 Кб
Скачать

Пример решения задач

1. На мыльную пленку с показателем преломления падает по нормали пучок лучей белого света. При какой наименьшей толщине пленки она в отраженном свете будет казаться зеленой ( )?

Дано:

Решение

Падающий на пленку пучок белого света 1 (см. рисунок) содержит лучи различных длин волн, часть пучка отражается от верхней (2) и проходящая часть от нижней поверхностей пленок (3).

– ?

Для того, чтобы в отраженном свете пленка выглядела зеленой, необходимо, чтобы при интерференции отраженных лучей выполнялось условие максимума для зеленой части спектра. Оптическая разность хода лучей 3 и 2, отраженных от нижней и верхней поверхностей пленки,

,

(оптический ход в плёнке луча 3 больше луча 2 на 2dn, но луч 2 отражается от оптически более плотной среды, поэтому его ход скачком увеличивается на ). Условие максима:

,

где k = 0, 1, 2… . Наименьшая толщина пленки будет при k = 0, тогда

Ответ: м.

2. На прозрачную дифракционную решетку с периодом мкм падает нормально монохроматический свет с длинной волны нм. Найти: а) наибольший порядок главного дифракционного максимума; б) угол дифракции главного дифракционного максимума наибольшего порядка.

Дано:

нм

мкм

Решение

Условие главного дифракционного максимума порядка имеет вид

, ( ),

а) – ?

б) – ?

где – угол дифракции, соответствующего главного максимума

Как следует из выпеприведенной формулы, наибольший порядок дифракционного максимума должен удовлетворять соотношению .

Отсюда имеем . Поскольку угол не может быть больше , а m должно быть целым, то выбираем m = 2. Для соответствующего угла дифракции получим =

Ответ: а) ; б)

3. Луч света, падающий на поверхность кристалла каменной соли, при отражении максимально поляризуется, если угол падения равен 57°. Найти: а) показатель преломления кристалла каменной соли; б) скорость распространения света в этом кристалле.

Дано:

Решение

Согласно закону Брюстера отраженный луч света максимально поляризован, если угол падения луча удовлетворяет соотношению

. (1)

а) – ?

б) – ?

Скорость света в кристалле может быть найдена из известного соотношения:

, (2)

где – скорость света в вакуме. Поэтому из формул (1) и (2) имеем

.

Ответ: а) б)

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

25. На мыльную пленку с показателем преломления n = 1,33 падает по нормали монохроматический свет с длиной волны  = 0,60 мкм. Отраженный свет в результате интерференции имеет наибольшую яркость. Какова наименьшая возможная толщина плёнки dmin? (0,11 мкм)

26. Плоская световая волна длиной 0 в вакууме падает по нормали на прозрачную пластинку с показателем преломления n. При каких толщинах b пластинки отраженная волна будет иметь:

а) максимальную интенсивность;

б) минимальную интенсивность?

(а) b = (0/2n)(m+0,5) (m = 1, 2, 3...); б) b = (0/2n)m (m = 1,2,3...))

27. Между стеклянной пластинкой и лежащей на ней плоско-выпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r3 третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны = 0,6 мкм равен 0,82 мм. Радиус кривизны линзы R = 0,5 м.

28. На тонкую пленку в направлении нормали к ее поверхности падает монохроматический свет с длиной волны = 500нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину dmin пленки, если показатель преломления материала пленки п = 1,4.

29. Расстояние L от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной l = 1 см укладывается N = 10 темных интерференционных полос. Длина волны  = 0,7 мкм.

30. На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны = 500 нм. Найти радиус R линзы, если радиус четвертого, темного Кольца Ньютона в отраженном свете r4 = 2 мм.

31. На тонкую глицериновую пленку толщиной d=1,5 мкм нормально к ее поверхности падает белый свет. Определить длины волн , лучей видимого участка cпектра (0,4 ≤  ≤ 0,8 мкм), которые будут 'ослаблены в результате интерференции.

32. На стеклянную пластину нанесен тонкий слой прозрачного вещества с показателем преломления п = 1,3. Пластинка освещена параллельным пучком Монохроматического света с длиной волны  = 640 нм, падающим на пластинку нормально. Какую минимальную толщину должен иметь слой, чтобы отраженный пучок имел наименьшую яркость?

33. На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны  = 500 нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b= 0,5 мм. Определить угол  между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин, n = 1,6.

34. Плосковыпуклая стеклянная линза с f = 1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r5 = 1,1 мм. Определить длину световой волны  .

35. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом (=590 нм). Радиус кривизны R линзы равен 5 см. Определить толщину d3 воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо.

3

6. На дифракционную решетку нормально падает пучок света.

Красная линия ( = 6300 Å) видна в спектре 3-го порядка под углом  = 60. Определить: а) какая спектральная линия видна под этим же углом в спектре 4-го порядка; б) какое число штрихов на 1 мм длины имеет дифракционная решетка.

( = 475 нм; N = 460 мм-1)

37. Источник света диаметром d = 30,0 см находится от места наблюдателя на расстоянии l = 200 м. В излучении источника содержатся волны длиной от 490 до 510 нм. Оценить для этого излучения: а) время когерентности ; б) длину когерентности ; в) радиус когерентности .

( 0,010 мм; 0,30 мм)

38. Какое наименьшее число Nmin штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн 1=589,0 нм и 2= 589,6 нм? Какова длина l такой решетки, если постоянна решетки d = 5 мкм?

39. На поверхность дифракционной решетки нормально к ее поверхности падает монохроматический свет. Постоянная дифракционной решетки в п = 4,6 раза больше длины световой волны. Найти общее число М дифракционных максимумов, которые теорети- чески можно наблюдать в данном случае.

40. На дифракционную решетку падает нормально параллельный пучок белого света. Спектры третьего и четвертого порядка частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка накладывается граница ( =780 нм) спектра третьего порядка?

41. На дифракционную решетку, содержащую п = 600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется поме- щенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L=1,2 м. Границы видимого спектра:  кр=780 нм, ф=400 нм.

42. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние d между атомными плоскостями равно 280 пм. Под углом  = 65° к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны  рентгеновского излучения.

43. На непрозрачную пластину с узкой щелью падает нормально плоская монохроматическая световая волна (=600 нм).Угол отклонения лучей, соответствующих второму дифракционному максимуму,  = 20°. Определить ширину а щели.

44. На дифракционную решетку, содержащую n = 100 штрихов на 1 мм, нормально падает монохроматический свет. Зрительная труба спектрометра наведена на максимум второго порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на угол  = 16°. Определить длину волны  света, падающего на решетку.

45. На дифракционную решетку падает нормально монохромати- ческий свет (=410 нм). Угол  между направлениями на максимумы первого и второго порядков равен 2°2/. Определить число п штрихов на 1 мм дифракционной решетки.

46. Постоянная дифракционной решетки в п = 4 раза больше длины световой волны монохроматического света, нормально падающего на ее поверхность. Определить угол  между двумя первыми симметричными дифракционными максимумами.

47. Расстояние между штрихами дифракционной решетки d=4 мкм. На решетку падает нормально свет с длиной волны  = 0,58 мкм. Максимум какого наибольшего порядка дает эта решетка?

48. Пластина кварца толщиной d1 = 1,0 мм, вырезанная перпендикулярно оптической оси кристалла, поворачивает плоскость поляризации монохроматического света определенной длины волны на угол 1 = 20. Определить:

а) какова должна быть длина d2 кварцевой пластинки, помещенной между двумя “параллельными” николями, чтобы свет был полностью погашен;

б) какой длины l трубку с раствором сахара концентрации С = 0,40 кг/л надо поместить между николями для получения того же эффекта.

Удельное вращение раствора сахара 0 = 0,665 град/(м-2кг).

(d2 = 4,5 мм; l = 3,4 дм)

49. Под каким углом к горизонту должно находиться солнце, чтобы его лучи, отраженные от поверхности озера, стали бы наиболее полно поляризованы, если скорость света в воде 2,26108 м/с? (37)

50. Пластинка кварца толщиной d = 4,0 мм (удельное вращение кварца 15 град/мм), вырезанная перпендикулярно оптической оси, помещена между двумя скрещенными николями. Пренебрегая потерями света в николях, определите, во сколько раз уменьшится интенсивность света, прошедшего эту систему.

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]