Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика[1].docx
Скачиваний:
37
Добавлен:
06.08.2019
Размер:
659.93 Кб
Скачать

19. Математический и пружинный маятники. Вывод формулы для расчета периодов их свободных незатухающих колебаний.

Физический маятник — это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела (рис. 1). 

Рис.1

Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы   (4)  где J — момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, Fτ ≈ –mgsinα ≈ –mgα — возвращающая сила (знак минус указывает на то, что направления Fτ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение (4) запишем как    или    Принимая   (5)  получим уравнение    идентичное с (1), решение которого (1) найдем и запишем как:   (6)  Из формулы (6) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω0 и периодом   (7)  где введена величина L=J/(ml) — приведенная длина физического маятника.  Точка О' на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называетсяцентром качаний физического маятника (рис. 1). Применяя теорему Штейнера для момента инерции оси, найдем    т. е. ОО' всегда больше ОС. Точка подвеса О маятника и центр качаний О' имеют свойство взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника.  3. Математический маятник — это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести. Хорошее приближение математического маятника есть небольшой тяжелый шарик, который подвешен на длинной тонкой нити. Момент инерции математического маятника   (8)  где l — длина маятника.  Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке — центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника   (9)  Сопоставляя формулы (7) и (9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Значит, приведенная длина физического маятника — это длина такого математического маятника, у которого период колебаний совпадает с периодом колебаний данного физического маятника. 

Вывода нет

20. Физический маятник. Его приведенная длина. Вывод формулы для расчета периода его свободных незатухающих колебаний.

Информация выше. Вывода нет

21. Выведите уравнение колебательного движения, являющегося суперпозицией гармонических колебаний одного направления с близкими частотами. Изобразите результирующее колебание на графике. Как называется такой вид колебания?

Для практики особый интерес представляет случай, когда два складываемых гар­монических колебания одинакового направления мало отличаются по частоте. В ре­зультате сложения этих колебаний получаются колебания с периодически изменяющей­ся амплитудой. Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями.

Пусть амплитуды складываемых колебаний равны А, а частоты равны и +, причем <<. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:

Складывая эти выражения и учитывая, что во втором сомножителе /2<<, найдем

(144.3)

Результирующее колебание (144.3) можно рассматривать как гармоническое с частотой , амплитуда Аб, которого изменяется по следующему периодическому закону:

(144.4)

Частота изменения Аб в два раза больше частоты изменения косинуса (так как берется по модулю), т. е. частота биений равна разности частот складываемых колебаний:

Период биений

22. Сложение взаимно-перпендикулярных гармонических колебаний. Получите уравнение траектории частицы, колеблющейся по осям х и у с одинаковой частотой. Каковы траектории при колебаниях по взаимно перпендикулярным осям с кратными частотами?

Рассмотрим результат сложения двух гармонических колебаний одинаковой час­тоты , происходящих во взаимно перпендикулярных направлениях вдоль осей х и у. Для простоты начало отсчета выберем так, чтобы начальная фаза первого колебания была равна нулю, и запишем

(145.1)

где — разность фаз обоих колебаний, А и В — амплитуды складываемых колебаний. Уравнение траектории результирующего колебания находится исключением из выражений (145.1) параметра t. Записывая складываемые колебания в виде

и заменяя во втором уравнении cost на х/А и sint на , получим после несложных преобразований уравнение эллипса, оси которого ориентированы относите­льно координатных осей произвольно:

(145.2)

Так как траектория результирующего колебания имеет форму эллипса, то такие колебания называются эллиптически поляризованными.

23. Выведите формулу для колебательного движения, являющегося суперпозицией гармонических колебаний одного направления с близкими частотами. Изобразите результирующее колебание на графике. Как называется такой вид колебания?

21

24. Какие силы называют консервативными? Дайте определение потенциальной энергии. Как связаны между собой потенциальная энергия и сила поля.

Есть в начале

25. Какие силы называют квазиупругими? Каков характер движения тела под действием этих сил? Запишите дифференциальное уравнение гармонических незатухающих колебаний и его решение. Выведите формулу для расчета периода.

КВАЗИУПРУГАЯ СИЛА - направленная к центру О сила. модуль к-рой пропорционален расстоянию r от центра О до точки приложения силы (F=-cr), где с - постоянный коэф., численно равный силе, действующей на единице расстояния. К. с. является силой центральной и потенциальной с силовой ф-цией U=-0,5cr2. Примерами К. с. служат силы упругости, возникающие при малых деформациях упругих тел (отсюда и сам термин "К. с."). Приближённо К. с. можно также считать касательную составляющую силы тяжести, действующей на матем. маятник при малых его отклонениях от вертикали. Для материальной точки, находящейся под действием К. с., центр О является положением её устойчивого равновесия. Выведенная из этого положения точка будет в зависимости от нач. условий или совершать около О прямолинейные гармонич. колебания, или описывать эллипс (в частности, окружность)

Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора X(t), изменяющего по гармоническому закону:

Если рассматривать механические колебания, то роль X(t) играет внешняя вынуждающая сила

                                                (147.1)

С учетом (147.1) закон движения для пружинного маятника (146.9) запишется в виде

                                         

Используя (142.2) и (146.10), придем к уравнению

                                                  (147.2)

Если рассматривать электрический колебательный контур, то роль X(t) играет подводимая к контуру внешняя периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение

                                                                       (147.3)

Тогда уравнение (143.2) с учетом (147.3) можно записать в виде

Используя (143.4) и (146.11), придем к уравнению

                                            (147.4)

Колебания, возникающие под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.

Уравнения (147.2) и (147.4) можно свести к линейному неоднородному дифференциальному уравнению

                                      (147.5)

применяя впоследствии его решение для вынужденных колебаний конкретной физической природы (x0 в случае механических колебаний равно F0/m, в случае электромагнитных — Um/L).

Решение уравнения (147.5) равно сумме общего решения (146.5) однородного урав­нения (146.1) и частного решения неоднородного уравнения. Частное решение найдем в комплексной форме. Заменим правую часть уравнения (147.5) на комплексную величину х0 :

                                                (147.6)

Частное решение этого уравнения будем искать в виде

Подставляя выражение для s и его производных   в уравнение (147.6), получаем

                                                          (147.7)

Так как это равенство должно быть справедливым для всех моментов времени, то время t из него должно исключаться. Отсюда следует, что =. Учитывая это, из уравнения (147.7) найдем величину s0 и умножим ее числитель и знаменатель на 

Это комплексное число удобно представить в экспоненциальной форме:

где

                                          (147.8)

                                                      (147.9)

Следовательно, решение уравнения (147.6) в комплексной форме примет вид

Его вещественная часть, являющаяся решением уравнения (147.5), равна

                                                       (147.10)

где А и   задаются соответственно формулами (147.8) и (147.9).

Таким образом, частное решение неоднородного уравнения (147.5) имеет вид

                                (147.11)

Решение уравнения (147.5) равно сумме общего решения однородного уравнения

                                                          (147.12)

(см. (146.5)) и частного решения (147.11). Слагаемое (147.12) играет существенную роль только в начальной стадии процесса (при установлении колебаний) до тех пор, пока амплитуда вынужденных колебаний не достигнет значения, определяемого равенством (147.8). Графически вынужденные колебания представлены на рис. 209. Следовательно, в установившемся режиме вынужденные колебания происходят с частотой  и являются гармоническими; амплитуда и фаза колебаний, определяемые выражениями (147.8) и (147.9), также зависят от .

Вывод формулы для расчета периода: