Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_1y_semestr_1_kurs_Avtosokhranennyy.docx
Скачиваний:
7
Добавлен:
28.04.2019
Размер:
5.09 Mб
Скачать
  1. Доказать теоремы Лагранжа, Коши и Лопиталя.

Теорема Лопиталя

Пусть функции и непрерывны и дифференцируемы в некоторой проколотой окрестности точки , причем , и . Тогда .

Доказательство:

Рассмотрим окрестность . (Рисунок) Выберем последовательность . Тогда, начиная с некоторого номера N, члены последовательности попадают в эту окрестность. Тогда, так как и , то функции и в точке имеют устранимый разрыв. Доопределим эти функции до непрерывности: , . Тогда на отрезке данные функции непрерывны и дифференцируемы на интервале . Таким образом, выполняются все условия теоремы Коши. Это значит, что

, где , или .

Перейдем к пределу при : ,

. ■

Замечание. Если не существует, то из этого не следует, что не существует .

Пример. Вычислим

, но не существует.

Пример. Вычислим . Применяя правило Лопиталя, получим .

Замечание. Теорема Лопиталя сформулирована для неопределенности типа и имеет место для неопределенностей типа

Теорема Лагранжа

Пусть функция непрерывна на отрезке и дифференцируема на интервале , тогда найдется точка .

Доказательство:

Введем вспомогательную функцию так, чтобы функция удовлетворяла теореме Ролля, т.е. :

, ,

.

Тогда ,

, . Таким образом,

Теорема Коши

Пусть функции и непрерывны на отрезке и дифференцируемы на интервале , причем . Тогда такая, что .

Доказательство:

Докажем сначала, что . Функция удовлетворяет условиям теоремы Лагранжа, значит, что . Отсюда .

Введем вспомогательную функцию так, чтобы она удовлетворяла условиям теоремы Ролля.

.

Тогда . Отсюда

.

Таким образом,

или . ■

Замечание. Теорема Коши является наиболее общей теоремой, т.е. теорема Ролля и Лагранжа являются следствиями из теоремы Коши.

Замечание. Геометрический смысл теоремы:

 точка , в которой касательная к графику функции имеет такой же наклон, как и хорда, соединяющая точки и . (Рисунок)

.

Замечание. Теорема Лагранжа является обобщением теоремы Ролля.

  1. Доказать формулу Тейлора.

Формула Тейлора

Можно заметить, что чем больше производных совпадают у двух функций в некоторой точке, тем лучше эти функции аппроксимируют (приближают) друг друга в окрестности этой точки. Нас будет интересовать приближение функции в окрестности одной точки с помощью многочленов. Рассмотрим многочлен степени : . Заметим, что . Так как , то

. Аналогично получим ,

.

Определение 1. Функция называется гладкой порядка в точке на интервале , если она имеет все производные порядка включительно, причем эти производные являются непрерывными функциями на отрезке . Этот факт обозначается .

Определение 2. Выражение вида

называется формулой Тейлора для функции в окрестности точки .

Теорема 1. Если функция является гладкой порядка в некоторой окрестности точки , то имеет место формула Тейлора для данной функции .

Доказательство:

Пусть имеет место формула Тейлора для функции : , причем

, , . Обозначим

.

Используя правило Лопиталя, покажем, что . Так как , …, , ,

тогда =

=…= . ■

Замечание. В формуле Тейлора первое слагаемое называют главной частью функции, а второе – остаточный член функции

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]