Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Met_1.docx
Скачиваний:
3
Добавлен:
25.04.2019
Размер:
834.96 Кб
Скачать

Действительные числа. Метод математической индукции. Абсолютная величина.

Опр.1. Числа 1, 2=1+1, 3=2+1,…n-1, n=(n-1)+1… называется натуральными. Таким образом, множество натуральных чисел может быть определено как наименьшее – числовое множество, содержащее число 1 и вместе с каждым числом n содержащее число n+1.

Метод математической индукции: если предложение, зависящее от натурального числа n:

а) верно для некоторого начального значения n=n , например, n=1;

б) из допущения, что оно верно для n=k, где k n произвольное натуральное число, вытекает, что предложение верно и для n=k+1, то предложение верно при любом натуральном n N.

Пример 1. Доказать, что верно равенство:

1 +2 +…+n = (1).

Решение: 1. ] n=1, тогда (1 =1) ( = =1), 1=1.

Действительно, равенство верно при n=1.

2. Допустим, что равенство (1) верно при n=k.

3. Докажем верность равенства (1)при n=k+1:

1 +2 +3 +…+k +(k+1) =(1 +2 +…+k )+(k+1) .

Т.к. равенство верно при n=k, то (1 +2 +…+k )+(k+1) = +(k+1) =(k+1)[ +(k+1)]=(k+1) =(k+1) .

Разложим 2k +7k+6 на множители, для этого найдем его нули:

2k +7k+6 =0

D=49-48=1>0 k = ; k = =-2, k = = -

Значит, 2k +7k+6= 2(k+2)(k+ )=(k+2)(2k+3)

Таким образом, 1 +2 +3 +…+k +(k+1) = ,

Т.е. равенство (1) верно при n=k+1. Значит, это равенство верно при

n N

Опр.2. Множество R называется множеством действительных чисел, а его элементы x R - действительными числами, если выполняется следующий набор аксиом: (см. В. А. Зорич «Математический анализ» стр. 45)

I. Аксиомы сложения (?).

II. Аксиомы умножения (?).

III. Аксиомы связи сложения и умножения (?).

IV. Аксиомы порядка (?).

V. Аксиомы связи сложения и порядка (?).

VI. Аксиомы связи умножения и порядка (?).

VII. Аксиомы полноты (?).

Опр.3. Абсолютной величиной (модулем) числа x называется число |x|, определяемое условиями: |x|=

Свойства абсолютных величин:

1. , |x| 0

2. , |x|=|-x|

3. , x |x|, -x≤|x|

4. , |x+y|≤|x|+|y|

5. , | |x|-|y| |≤|x-y|.

6. , |xy|=|x| |y|.

Неравенство |x|≤ означает, что - .

Неравенство |x| означает, что (x .

Пример 2. Решить неравенства: а) |2x-1|<1,

б) |x -8x+12|>x -8x+12.

Решение: а) неравенство |2x-3|<1 равносильно неравенствам –

1<2х-3<1, откуда 2<2x<4 1<x<2.

Ответ: (1,2).

б) данное неравенство справедливо для тех значений х, при которых x -8x+12<0. Найдем нули квадратного трехчлена:

x -8x+12=0

(x +x =8) (x x =12) (x =2) (x =6)

Таким образом, x -8x+12=(х-2)(х-6). Решаем методом интервалов:

Ответ: (2,6).

Пример 3. Имеет ли решение уравнение: |x|=x+5

Решение: при х 0 имеем х=х+5, решений нет. При х<0 имеем –х+х+5=0 , х= . Это значение удовлетворяет исходному уравнению.

Ответ: х= .

Предел последовательности.

Опр.1. Пусть поставлено в соответствие вполне определенное число a (причем различным n могут соответствовать одинаковые числа). Совокупность элементов a , n=1,2,3… называется числовой последовательностью, каждый элемент a - элементом (членом) последовательности, n-его номер.

Опр.2. Число называется пределом последовательности , , если для любого сколь угодно малого действительного положительного , найдется такой номер , зависящий от , что |a -a|< при .В этом случае пишут а =а или а а при n .

Опр.3. Последовательность , n ,называется ограниченной, если существует действительное число с>0 , что |a |<c при .

Пример 1. Зная несколько первых членов последовательности, написать одно из возможных выражений для общего члена:

; ; ; ; ;…

Решение: числитель каждого из заданных членов последовательности равен квадрату номера этого члена плюс единица, т.е. n +1. Знаменатели образуют арифметическую прогрессию 3,8,13,18…. с первым членом x =3 и разностью d=5. Поэтому x =x +d(n-1)=5n-2.

Следовательно, исходная формула а = .

ЗАМЕЧАНИЕ: знание нескольких первых членов последовательности еще не определяет эту последовательность.

Пример 2. Доказать, что последовательность а =(-1) sin n ограничена.

Решение: |а |=|(-1) sin n|=|(-1) | | | |sin n| =2- <2,

Отсюда, по опр.3. а -ограничена, с=2.

Пример 3. Непосредственно доказать, что при ,

Решение: Необходимо доказать, что

Пример 4. Пользуясь опр.2., доказать, что а = , если а = , начиная с какого n выполняется неравенство

| а - | <0,01.

Решение: найдем | а - | = | - | = .

Пусть >0 задано. Выберем так, чтобы выполнялось неравенство < .

Решаем это неравенство: в силу 17 действительных чисел, будем иметь 5 -1> > .

Положив = [ ]+1, получим, что при , |a - |< .

А это означает в силу опр.2. а = . Пусть =0,01, тогда n =[ ]+1= [ ]+1=6 и все члены последовательности, начиная с шестого, содержатся в U( ) – окрестности точки , т.е. в интервале ] [ =]0,59;0,61[.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]