Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
измерения.docx
Скачиваний:
3
Добавлен:
23.04.2019
Размер:
1.6 Mб
Скачать

Вопрос 10

Д ля увеличения чувствительности ферродинамические механизмы содержит магнитопровод из магнитно-мягкого материала. Наличие магнитопровода значительно увеличивает магнитное поле в рабочем зазоре и при этом возрастает вращающий момент.

Неподвижная катушка 2 размещается на полюсах ферромагнитного сердечника 4, а подвижная 3 поворачивается так же, как и в приборах магнитоэлектрической системы,- в воздушном зазоре между полюсами 1 и неподвижным цилиндрическим сердечником 5. При такой конструкции приборы защищены от влияния внешних магнитных полей. Кроме того, увеличиваются магнитные потоки, создаваемые катушками, и возрастает вращающий момент, действующий на подвижную систему.

Ферродинамическим ИМ свойственны также хорошая защита от влияния внешних магнитных полей, возможность использования магнитоиндукционного успокоения без применения специальных мер защиты от влияния поля магнита успокоителя (что требуется для электродинамических приборов) и некоторые другие особенности.

Ферродинамические приборы, как правило, выпускают не выше класса точности 0,5 и только в редких случаях - класса точности 0,2.

Рабочая частота для ферродинамических приборов обычно 50 или 400 Гц. Допустимые отклонения значения частоты, при которых прибор остается в указанном классе точности, составляют не более 10-20% от ее номинального значения.

Вопрос 11

Во-первых, они обеспечивают высокую точность в широком диапазоне измеряемых величин. Во-вторых, их применение позволяет организовать измерения таким образом, чтобы компенсировать посторонние влияния, что незаменимо для локализации неисправности. В-третьих, они недороги.

Если мост сбалансирован то напряжение на вольтметре равно нулю.

Вопрос 12

К омпенсационный метод является наиболие точным для измерения напряжения и тока. Этот метод заключается в сравнении измеряемого напряжения с известным подением напряжения на источнике.

Компенсационный метод имеет очень узкую специальность. Простейшая схема:

На этой схеме резистор является подстроечным его подбирают таким образом что бы ток через амперметр был равен нулю, тогда зная напряжение одного источника можем найти напряжение второго.

В этой схеме Е1 и Е2 образцовые источники с известным напряжением. Ех источник с неизвестным напряжением.

R2 и R3 – реостаты. Подключив амперметр к контакту 1

Регулируем сопративление R2, добиваемся того чтоды показания амперметра было равным нулю.

Далее подключаем амперметр к контакту 2, регулируя сопративления R3, так же добиваемся что бы показания амперметра были равным нулю.

Ех/Е2=R1/R3 Ex=E2 *(R1/R3)

Точность таким методом 0,02%

Вопрос 14

Э лектронно-лучевые осциллографы – приборы, предназначенные для визуального наблюдения форм исследуемых электрических сигналов. Кроме того, осциллографы могут применяться для измерения частоты, периода и амплитуды.

Основная деталь электронного осциллографа - электронно-лучевая трубка (смотри рисунок), напоминающая по форме телевизионный кинескоп.

Экран трубки (8) покрыт изнутри люминофором - веществом, способным светиться под ударами электронов. Чем больше поток электронов, тем ярче свечение той части экрана, куда они попадают. Испускаются же электроны так называемой электронной пушкой, размещенной на противоположном от экрана конце трубки. Она состоит из подогревателя (нити накала) (1) и катода (2). Между “пушкой” и экраном размещены модулятор (3), регулирующий поток летящих к экрану электронов, два анода (4 и5), создающих нужное ускорение пучку электронов и его фокусировку, и две пары пластин, с помощью которых электроны можно отклонять по горизонтальной Y (6) и вертикальной X (7) осям.

Работает электроннолучевая трубка следующим образом:

Н а нить накала подают переменное напряжение, на модулятор постоянное, отрицательной полярности по отношению к катоду на аноды - положительное, причем на первом аноде (фокусирующем) напряжение значительно меньше, чем на втором (ускоряющем). На отклоняющие пластины подается как постоянное напряжение, позволяющее смещать пучок электронов в любую сторону, относительно центра экрана, так и переменное, создающее линию развертки той или иной длины (пластины Пх), а также ”рисующей” на экране форму исследуемых колебаний (пластины Пу).

Чтобы представить, как получается на экране изображение, экран трубки представим в виде окружности (хотя у трубки он может быть и прямоугольный) и поместим внутри нее отклоняющие пластины (см. рисунок). Если подвести к горизонтальным пластинам Пх пилообразное напряжение, на экране появится светящаяся горизонтальная линия - ее называют линией развертки или просто разверткой. Длина ее зависит от амплитуды пилообразного напряжения.

Если теперь одновременно с пилообразным напряжением, поданным на пластины Пх, подать на другую пару пластин (вертикальных - Пу), например, переменное напряжение синусоидальной формы, линия развертки в точности “изогнется” по форме колебаний и “нарисует” на экране изображение.

В случае равенства периодов синусоидального и пилообразного колебаний, на экране будет изображение одного периода синусоиды. При неравенстве же периодов на экране появится столько полных колебаний, сколько периодов их укладывается в периоде колебаний пилообразного напряжения развертки. В осциллографе имеется регулировка частоты развертки, с помощью которой добиваются нужного числа наблюдаемых на экране колебаний исследуемого сигнала.

13