Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety po matematike.docx
Скачиваний:
6
Добавлен:
17.04.2019
Размер:
702.62 Кб
Скачать

4)Алгоритм нахождения матрицы Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.

  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.

  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.

  4. Записать обратную матрицу А-1, которая находится в последней таблице под матрицей Е исходной таблицы.

Пример 1

Для матрицы А найти обратную матрицу А-1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А-1.

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Алгоритм нахождения ранга матрицы.

Пример   Найдите ранг матрицы .

Решение. Первую строку оставляем без изменений. Чтобы избежать появления дробей, умножим вторую, третью и четвертую строки на 2:

Первую строку умножим на и прибавим ко второй. Получим строку . Первую строку умножим на и прибавим к третьей. Получим строку . Первую строку умножим на и прибавим к четвертой. Получим строку . В итоге имеем матрицу

Вторую строку оставляем без изменений. К третьей строке прибавляем вторую, умноженную на 2. Получим строку . К четвертой строке прибавляем вторую. Получим нулевую строку. Преобразованная матрица имеет вид

Поменяем местами третий и четвертый столбцы:

Базисный минор матрицы стоит в первых трех столбцах и первых трех строках, . Следовательно, .

Пример Пусть

Найдём частные производные второго порядка. Для этого сначала найдём производные первого порядка:

Затем находим производные от :

   

   

производные от :

и производные от :

   

   

От любой из частных производных второго порядка можно рассматривать, в свою очередь, частные производные:

Эти производные (их штук) называются частными производными третьего порядка; от них можно найти частные производные четвёртого порядка

и т. д.

Если при вычислении частной производной высокого порядка некоторые дифференцирования проводятся по одной и той же переменной несколько раз подряд, то это отражается в обозначениях очевидным образом, например, означает то же самое, что Дифференциальное и интегральное исчисление Многочисленные лотереи и страховые компании, которые организовались в течение этого периода, вызвали у многих математиков, включая Эйлера, интерес к теории вероятностей. Это повело к попыткам применить учение о вероятностях в новых областях.

5)Системы линейных алгебраических уравнений Система линейных алгебраических уравнений

Система m линейных уравнений с n неизвестными (или, линейная система) в линейной алгебре — это система уравнений вида

(1)

Здесь x1, x2, …, xn — неизвестные, которые надо определить. a11, a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[1].

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все её уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой.

Содержание

 [убрать

  • 1 Матричная форма

  • 2 Методы решения

    • 2.1 Прямые методы

    • 2.2 Итерационные методы

  • 3 См. также

  • 4 Ссылки

  • 5 Примечания

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]