Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции+-+копия.doc
Скачиваний:
34
Добавлен:
23.12.2018
Размер:
6 Mб
Скачать

Электрическая дуга.

В коммутационных аппаратах при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги.

Тлеющий разряд возникает при токах до 100А и напряжениях до 300В. Такой разряд встречается либо в контактах маломощных реле, либо как переходная фаза к возникновению дуги.

Свойства дугового разряда:

1) Возникает только при больших токах (для металлов более 0,5А);

2) В центральной части дуги очень высокая температура (от 6 до 18 тысяч К);

3) На катоде дуги очень высокая плотность тока (от 100 до 1000 на мм);

4) Падение напряжения на катоде составляет 10-20 В и практически не зависит от тока.

В дуговом разряде можно выделить 3 области: околокатодную, околоанодную и ствол дуги.

Дуга представляет из себя проводник. В каждой из областей дуги процессы ионизации и деионизации протекают по разному в зависимости от условий, но ток, проходящий через эти три области одинаков, следовательно обеспечивается возникновение необходимого количества зарядов.

Термо-электронная эмиссия.

Термо-электронная эмиссия – явление испускания электронов из накаленной поверхности.

На отрицательном электроде образуется, так называемое, катодное пятно (раскаленная площадка), которая является основанием дуги и очагом излучения электронов в момент расхождения контактов. Плотность тока термо-электронной эмиссии зависит от температуры и материала электродов. Она не велика и может быть достаточной для возникновения дуги, но ее недостаточно для горения дуги.

Автоэлектронная эмиссия.

Автоэлектронная эмиссия – это явление испускания электронов из катода под воздействием сильного электрического поля. Место разрыва электрической цепи может быть представлено как конденсатор переменной емкости. Емкость в начальный момент времени равна бесконечности, а затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, напряжение на нем растет от 0 до напряжения сети. Одновременно увеличивается расстояние между между контактами. Напряженность поля между контактами достигает значения 100МВ/см. Такое электрическое поле способно вырывать электроны из холодного катода. Ток автоэлектронной эмиссии также весьма мал и может служить только началом развития дуги.

Ионизация толчком.

Если свободный электрон обладает достаточной скоростью, то при столкновении с нейтральной частицей, он может выбить из нее электрон. В результате получается новый свободный электрон и положительный ион. Этот новый электрон также способен выбить электрон из другой частицы. Такой процесс называется – ионизация толчком.

Потенциал ионизации для газов 13-16 В (азот, кислород, водород) и до 24 В (гелий); для паров металла 7,7 В (медь).

Термическая ионизация – это процесс ионизации под воздействием высокой температуры.

Деионизация происходит за счет двух процессов: рекомбинация и диффузия.

Рекомбинация – это процесс при котором различно-заряженные частицы приходят во взаимное соприкосновение образуя нейтральные частицы.

Диффузия – процесс выноса заряженных частиц из дугового промежутка в окружающее пространство. В результате диффузии уменьшается проводимость дуги.

Падение напряжения на стационарной дуге распределяется неравномерно вдоль дуги. Длина участков катодного и анодного напряжений составляет см. Суммарное падение анодного и катодного напряжений составляет 15-30 В, градиент напряжения составляет В/см. В стволе дуги градиент напряжения составляет 100-200 В/см. Падение напряжения на дуговом промежутке складывается из электродного падения напряжения и напряжения дуги: , где

- напряженность поля в стволе дуги,

.