Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Часть ответов по физе.docx
Скачиваний:
155
Добавлен:
21.06.2016
Размер:
295.76 Кб
Скачать

Билет 1

НЕРВНЫЕ ЦЕНТРЫ. ИХ ОБЩИЕ СВОЙСТВА.

НЕРВНЫЙ ЦЕНТР — совокупность структур центральной нервной системы, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Представление о структурно-функциональной основе нервного центра обусловлено историей развития учения о локализации функций в центральной нервной системе

СВОЙСТВА.

1.ОДНОСТОРОННОСТЬ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ. В рефлекторной дуге, включающей нервные центры, процесс возбуждения распространяется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям).

2. ИРРАДИАЦИЯ ВОЗБУЖДЕНИЯ. Особенности структурной организации центральных нейронов, огромное число межнейронных соединений в нервных центрах существенно изменяют направление распространения процесса возбуждения в зависимости от силы раздражителя и функционального состояния центральных нейронов.

3. СУММАЦИЯ ВОЗБУЖДЕНИЯ. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов.

4. НАЛИЧИЕ СИНАПТИЧЕСКОЙ ЗАДЕРЖКИ. Время рефлекторной реакции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. При относительно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка).

5. ВЫСОКАЯ УТОМЛЯЕМОСТЬ. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомлением. Этот процесс связан с деятельностью синапсов — в последних наступает истощение запасов медиатора, уменьшаются энергетические ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

6. ТОНУС. В покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра.

7. ПЛАСТИЧНОСТЬ. Функциональная возможность нервного центра существенно модифицировать картину осуществляемых рефлекторных реакций.

8. КОНВЕРГЕНЦИЯ. Нервные центры высших отделов мозга являются мощными коллекторами, собирающими разнородную афферентную информацию. Количественное соотношение периферических рецепторных и промежуточных центральных нейронов предполагает значительную конвергенцию («сходимость») разномодальных сенсорных посылок на одни и те же центральные нейроны.

9. ИНТЕГРАЦИЯ В НЕРВНЫХ ЦЕНТРАХ. Важные интегративные функции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функциональных объединений отдельных нервных центров в целях осуществления сложных координированных приспособительных целостных реакций организма (сложные адаптивные поведенческие акты).

10. СВОЙСТВО ДОМИНАНТЫ. Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. Доминантный нервный очаг характеризуется такими свойствами, как повышенная возбудимость, стойкость, способность к суммированию возбуждения.

Принцип доминанты определяет формирование главенствующего (активирующего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.

2) Строение биологических мембран. Одной из основных особенностей всех эукариотических клеток является изобилие и сложность строения внутренних мембран. Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндр-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.

Плазматическая мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов.

Молекулы фосфолипидов расположены в два ряда — гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы — поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.

В состав плазматической мембраны эукариотических клеток входят также полисахариды. Их короткие, сильно развлетвленные молекулы ковалентно связаны с белками, образуя гликопротеины, или с липидами (гликолипиды). Содержание полисахаридов в мембранах составляет 2-—10% по массе. Полисахаридный слой толщиной 10—20 нм, покрывающий сверху плазмалемму животных клеток, получил название гликокаликс.

Современная, экспериментально доказанная, мембранно-ионная теория возникновения биопотенциалов (Ходжкин, Хаксли, Катц). Основные положения.

Электрические процессы возникают на плазматической мембране клетки, которая состоит из бимолекулярного слоя липидов (остов мембраны) и белков, которые выполняют различные функции в мембране: рецепторную, ферментативную, образуют в ней каналы и насосы.

Канал мембраны может быть неспецифическим, он постоянно открыт, не имеет воротного механизма, электрические воздействия не изменяют его состояния. Называют каналом «утечки». Специфические каналы (селективные) имеют воротный механизм, поэтому могут находиться или в открытом, или в закрытом состоянии в зависимости от электрических воздействий на мембрану и пропускают только определенный ион. Этот канал состоит из трех частей:

1. Водной поры - выстлана внутри гидрофильными группами;

2. Селективного фильтра - на наружной поверхности, который пропускает ионы в зависимости от их размера и формы;

3. Ворот - на внутренней поверхности мембраны, управляют проницаемостью канала.

Каналы для натрия имеют два типа ворот: быстрые активационные и медленные инактивационные. В покое открыты медленные инактивационные и закрыты быстрые активационные. При возбуждении происходит открытие быстрых активационных и медленное закрытие медленных инактивационных, т.е. на короткий промежуток времени оба типа ворот открыты.

Калиевые каналы имеют только медленные ворота.

Насосы выполняют функцию транспорта через мембрану ионов против градиента концентрации, для их работы используется энергия АТФ. По обе стороны мембраны существует концентрационный градиент.

Внутри клетки в 40 раз больше ионов калия, тогда как вне клетки в 20-30 раз больше ионов натрия и в 50 раз больше ионов хлора.

Мембрана пропускает молекулы жирорастворимых веществ, а анионы органических кислот не проходят. Мембрана проницаема для воды, для ионов проницаемость мембраны различна: для калия в состоянии покоя проницаемость почти в 25 раз больше, чем для натрия. При возбуждении увеличивается проницаемость и для калия (постепенно), и для натрия (быстро, но на очень короткий промежуток времени).

3) Центральная регуляция сердечной деятельности осуществляется симпатическим и парасимпатическим отделами нервной системы.

Симпатические влияния стимулируют сердечную функцию, повышая мощность сокращения сердца (положительный инотропный эффект), увеличивая возбудимость и скорость проведения возбуждения (положительный батмо- и дромотропный эффект). Частота сокращений сердца при этом возрастает (положительный хронотропный эффект).

Парасимпатические нервы (ветви блуждающего нерва) оказывают на сердце противоположное влияние: они понижают возбудимость и проводимость, силу и частоту сердечных сокращений. Расслабление сердца в диастоле становится более полным. Это явление может быть охарактеризовано как отрицательный тонусотропный эффект в отличие от вызываемого симпатическими влияниями положительного тонусотропного эффекта.

Влияние блуждающего нерва на сердце осуществляется непрерывно, так как вегетативные парасимпатические центры. постоянно находятся в тонусе.

С возрастом, а также под влиянием систематической мышечной деятельности происходит повышение тонуса блуждающих нервов. Внешний антагонизм влияний, оказываемых блуждающими и симпатическими нервами на сердце, является лишь частным случаем глубокого внутреннего единства регуляторных воздействий на деятельность сердца.

Билет 2

1) Раздражимость – это способность клеток, тканей, организма в целом переходить под воздействием факторов внешней или внутренней среды из состояния физиологического покоя в состояние активности. Состояние активности проявляется изменением физиологических параметров клетки, ткани, организма, например изменением метаболизма.

Возбудимость – это способность живой ткани отвечать на раздражение активной специфической реакцией – возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Т.е. возбудимость характеризует специализированные ткани – нервную, мышечные, железистые, которые называются возбудимыми. Возбуждение – это комплекс процессов реагирования возбудимой ткани на действие раздражителя, проявляющийся изменением мембранного потенциала, метаболизма и т.д. Возбудимые ткани обладают проводимостью. Это способность ткани проводить возбуждение. Наибольшей проводимостью обладают нервы и скелетные мышцы.

Раздражитель – это фактор внешней или внутренней среды действующий на живую ткань.

Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением.

Все раздражители делятся на следующие группы:

1.По природе: а) физические (электричество, свет, звук, механические воздействия и т.д.), б) химические (кислоты, щелочи, гормоны и т.д.), в) физико-химические (осмотическое давление, парциальное давление газов и т.д.), г) биологические (пища для животного, особь другого пола), д) социальные (слово для человека).

2.По месту воздействия: а) внешние (экзогенные), б) внутренние (эндогенные)

3.По силе: а) подпороговые (не вызывающие ответной реакции), б) пороговые (раздражители минимальной силы, при которой возникает возбуждение), в) сверхпороговые (силой выше пороговой)

4.По физиологическому характеру: а) адекватные (физиологичные для данной клетки или рецептора, которые приспособились к нему в процессе эволюции, например, свет для фоторецепторов глаза), б) неадекватные

Если реакция на раздражитель является рефлекторной, то выделяют также: а) безусловно-рефлекторные раздражители. б) условно-рефлекторные

2) Общее значение вегетативной регуляции

ВНС (вегетативная нервная система) приспосабливает работу внутренних органов к изменениям окружающей среды. ВНС обеспечивает гомеостаз(постоянство внутренней среды организма). ВНС также участвует во многих поведенческих актах, осуществляемых под управлением головного мозга, влияя не только на физическую, но и на психическую деятельность человека.Роль симпатического и парасимпатического отделов Симпатическая нервная система активируется при стрессовых реакциях. Для неё характерно генерализованное влияние, при этом симпатические волокна иннервируют подавляющее большинство органов. Известно, что парасимпатическая стимуляция одних органов оказывает тормозное действие, а других — возбуждающее действие. В большинстве случаев действие парасимпатической и симпатической систем противоположно. Влияние симпатического и парасимпатического отделов на отдельные органы Влияние симпатического отдела: На сердце — повышает частоту и силу сокращений сердца. На артерии — сужает артерии. На кишечник — угнетает перистальтику кишечника и выработку пищеварительных ферментов. На слюнные железы — угнетает слюноотделение. На мочевой пузырь — расслабляет мочевой пузырь. На бронхи и дыхание — расширяет бронхи и бронхиолы, усиливает вентиляцию легких. На зрачок — расширяет зрачки. Влияние парасимпатического отдела: На сердце — уменьшает частоту и силу сокращений сердца. На артерии — расслабляет артерии. На кишечник — усиливает перистальтику кишечника и стимулирует выработку пищеварительных ферментов. На слюнные железы — стимулирует слюноотделение. На мочевой пузырь — сокращает мочевой пузырь. На бронхи и дыхание — сужает бронхи и бронхиолы, уменьшает вентиляцию легких На зрачок — сужает зрачки.

Электрокардиография - метод исследования сердечной мышцы путём регистрации биоэлектрических потенциалов работающего сердца. Охват возбуждением огромного количества клеток рабочего миокарда вызывает появление отрицательного заряда на поверхности этих клеток. Сердце становится мощным электрогенератором. Ткани тела, обладая сравнительно высокой электропроводностью, позво­ляют регистрировать электрические потенциалы сердца с поверх­ности тела. Электрокардиография широко при­меняется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ. Вследствие определенного положения сердца в грудной клетке и своеобразной формы тела человека электрические силовые линии, возникающие между возбужденными (—) и невозбужденными (+) участками сердца, распределяются по поверхности тела неравно­мерно. По этой причине в зависимости от места приложения элек­тродов форма ЭКГ и вольтаж ее зубцов будут различны. Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Обычно используют три так назы­ваемых стандартных отведения от конечностей: I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука — левая нога. . Кроме того, регистрируют три униполярных усиленных отведения по Гольдбергеру: aVR; aVL; aVF. При регистрации усиленных отведений два электрода, используемые для регистрации стандартных отведений, объединяются в один и регистрируется разность потенциалов между объединенными и активными электродами. Так, при aVR активным является электрод, наложенный на правую руку, при aVL — на левую руку, при aVF — на левую ногу. Вильсоном предложена регистрация шести грудных отведений.

Взаимоотношение величины зубцов в трех стандартных отведе­ниях было установлено Эйнтховеном. Он нашел, что электродви­жущая сила сердца, регистрируемая во II стандартном отведении, равна сумме электродвижущих сил в I и III отведениях. Выражением электродвижущей силы является высота зубцов, поэтому зубцы II отведения по своей величине равны алгебраической сумме зубцов I и III отведений.

Формирование ЭКГ (ее зубцов и интервалов) обусловлено рас­пространением возбуждения в сердце и отображает этот процесс. Зубцы возникают и развиваются, когда между участками возбу­димой системы имеется разность потенциалов, т. е. какая-то часть системы охвачена возбуждением, а другая нет. Изопотенциальная линия возникает в случае, когда в пределах возбудимой системы нет разности потенциалов, т. е. вся система не возбуждена или, наоборот, охвачена возбуждением. С позиций электрокардиологии, сердце состоит из двух возбудимых систем — двух мышц: мышцы предсердий и мышцы желудочков. Эти две мышцы разделены со­единительнотканной фиброзной перегородкой. Связь между двумя мышцами и передачу возбуждения осуществляет проводящая си­стема сердца. В силу того, что мышечная массапроводящей системы мала, генерируемые в ней потенциалы при обычных усилениях стандартных электрокардиографов не улавливаются. Следователь­но, зарегистрированная ЭКГ отражает последовательный охват возбуждением сократительного миокарда предсердий и же­лудочков.

Зубец Р) отображает охват возбуждением пред­сердий и получил название предсердного. Далее возбуждение рас­пространяется на предсердно-желудочковый узел и движется по проводящей системе желудочков. В это время электрокардиограф регистрирует изопотенциальную линию (оба предсердия полностью возбуждены, оба желудочка еще не возбуждены, а движение воз­буждения по проводящей системе желудочков не улавливается элек­трокардиографом — сегмент PQ на ЭКГ). В предсердиях возбуждение распространяется преимущественно по сократительному миокарду лавинообразно от синусно-предсердной к предсердно-желудочковой области. Скорость распространения возбуждения по специализированным внутрипредсердным пучкам в норме примерно равна скорости распространения по сократительному миокарду предсердия, поэтому охват возбуждением предсердий ото­бражается монофазным зубцом Р. Охват возбуждением желудочков осуществляется посредством передачи возбуждения с элементов про­водящей системы на сократительный миокард, что обусловливает сложный характер комплекса QRS, отражающего охват возбужде­нием желудочков. При этом зубец Q обусловлен возбуждением верхушки сердца, правой сосочковой мышцы и внутренней повер­хности желудочков, зубец R — возбуждением основания сердца и наружной поверхности желудочков. Процесс полного охвата воз­буждением миокарда желудочков завершается к окончанию форми­рования зубца S. Теперь оба желудочка возбуждены и сегмент ST находится на изопотенциальной линии вследствие отсутствия разности потенциалов в возбудимой системе желудочков.Зубец Т отражает процессы реполяризации, т. е. восстанов­ление нормального мембранного потенциала клеток миокарда. Эти процессы в различных клетках возникают не строго синхронно. Вследствие этого появляется разность потенциалов между еще де­поляризованными участками миокарда (т. е. обладающими отрица­тельным зарядом) и участками миокарда, восстановившими свой положительный заряд. Указанная разность потенциалов регистри­руется в виде зубца Т. Этот зубец — самая изменчивая часть ЭКГ. Между зубцом Т и последующим зубцом Р регистрируется изопотенциальная линия, так как в это время в миокарде желудочков и в миокарде предсердий нет разности потенциалов. Видимого ото­бражения на ЭКГ зубца, соответствующего реполяризации предсер­дий, нет в связи с тем, что он по времени совпадает с мощным комплексом QRS и поглощается им. При поперечной блокаде сердца, когда не каждый зубец Р сопровождается комплексом QRS, наблю­дается предсердный зубец Та (T-атриум), отображающий реполяри­зацию предсердий. Общая продолжительность электрической систолы желудочков (Q—T) почти совпадает с длительностью механической систолы (механическая систола начинается несколько позже, чем электри­ческая).Электрокардиограмма позволяет оценить характер нарушений проведения возбуждения в сердце. Так, по величине интервала Р—Q (от начала зубца Р и до начала зубца Q) можно судить о том, совершается ли проведение возбуждения от предсердия к желудочку с нормальной скоростью. В норме это время равно 0,12—0,2 с. Общая продолжительность комплекса QRS отражает скорость охвата возбуждением сократительного миокарда желудочков и составляет 0,06—0,1 с.

Билет 3

1) Возбуждение в ЦНС.

Основное свойство нервной системы имеет ряд особенностей в ЦНС по сравнению с возбуждением в нервном волокне.

В связи с особенностями строения синапсов, в ЦНС возможно только одностороннее проведение возбуждения от окончания аксона, где освобождается медиатор, к постсинаптической мембране.

В синапсах ЦНС отмечается замедленное проведение возбуждения.

Известно, что возбуждение по нервным волокнам проводится быстро.

В синапсах скорость проведения возбуждения примерно в 200 раз ниже скорости проведения возбуждения в нервном волокне, т.к. при передаче импульса через синапс затрачивается время на:

– выделение медиатора нервным окончанием в ответ на пришедший импульс.

– на диффузию медиатора через синаптическую щель к постсинаптической мембране

– на возникновение под влиянием этого медиатора возбуждающего постсинаптического потенциала.

Простейшим нервным центром является нервная цепь, состоящая из трех последовательно соединенных нейронов (рис). Нейроны сложных нервных центров имеют многочисленные связи между собой, образуя нервные сети трех типов: 1. Иерархические. Если возбуждение распространяется на все большее количество нейронов, то такое явление называется дивергенцией (рис). Если же наоборот, от нескольким нейронов пути идут к меньшему количеству, такой механизм называется конвергенцией (рис). Например, к одному мотонейрону могут подходить нервные окончания от нескольких афферентных нейронов. В таких сетях вышележащие нейроны управляют ниже лежащими. 2. Локальные сети. Содержат нейроны с короткими аксонами. Они обеспечивают связь нейронов очного уровня ЦНС II кратковременное сохранение информации на этом уровне. Примером их является кольцевая цепь (рис). По таким цепям возбуждение циркулирует определенное время. Такая циркуляция называется реверберацией возбуждения (мех. кратковременной памяти). 3. Дивергентные сети с одним входом. В них один нейрон, т.е. вход образует большое количество связей с нейронами многих центров. В связи с наличием многочисленных связей между нейронами сети в них может возникать иррадиация возбуждения. Это его распространение на все нейроны. В результате иррадиации возбуждение может переходить на другие нервные центры и даже охватывать всю нервную систему. В нервных сетях большое количество вставочных нейронов, ряд из которых является тормозными. Поэтому в них может возникать несколько типов тормозных процессов: 1) Реципрокное торможение. В этом случае, сигналы идущие от афферентных нейронов, возбуждают одни нейроны. но одновременно, через вставочные тормозные нейроны, тормозят другие. Такое торможение называется также сопряженным (рис). 2) Возвратное торможение. При этом, возбуждение идет от нейрона по аксону к другой клетке. Но одновременно по коллатералям (ветвям) к тормозному нейрону, который образует синапс на теле этого же нейрона. Частный случай такого торможения - торможение Реншоу. При возбуждении мотонейронов спинного мозга, нервные импульсы по их аксонам идут к мышечным волокнам, но одновременно они распространяются по коллатералям этого аксона к клокам Реншоу. Аксоны клеток Реншоу образуют тормозные синапсы на телах этих же мотонейронов. В результате, чем сильнее возбуждается мотонейрон, тем более сильное тормозящее влияние на него оказывает тормозной нейрон Реншоу (рис). Такая связь в ЦНС называется обратной отрицательной. 3) Латеральное торможение. Это процесс, при котором возбуждение одной нейронной цепи приводит к торможению параллельной с такими же функциями. Осуществляется через вставочные нейроны.

2) . Под потенциалом действия понимают быстрое колебание потенциала покоя, сопровождающееся, как правило, перезарядкой мембраны. . Если через стимулирующий электрод подавать короткие толчки гиперполяризующего тока, то можно зарегистри­ровать увеличение мембранного потенциала, пропорциональное ам­плитуде подаваемого тока; при этом мембрана проявляет свои ем­костные свойства — замедленное нарастание и снижение мембран­ного потенциала Ситуация будет изменяться, если через стимулирующий электрод подавать короткие толчки деполяризующего тока. При небольшой (подпороговой) величине деполяризующего тока мембрана ответит пассивной деполяризацией и проявит емкостные свойства. Подпороговое пассивное поведение клеточной мембраны называется элек­тротоническим, или электротоном. Увеличение деполяризующего тока приведет к появлению активной реакции клеточной мембраны в форме повышения натриевой проводимости (gNa+). При этом проводимость клеточной мембраны не будет подчиняться закону Ома. Отклонение от пассивного поведения проявляется обычно при 50—80% значении порогового тока. Активные подпороговые изме­нения мембранного потенциала называются локальным ответом.

Изменение возбудимости в различные фазы одиночного цикла возбуждения. Если принять уровень возбудимости в условиях физиологического покоя за норму, то в ходе развития одиночного цикла возбуждения можно наблюдать ее циклические колебания. Так, в период развития начальной деполяризации на очень короткое время возбудимость незначительно повышается по сравнению с исходной. Во время развития полной деполяризации и инверсии заряда возбудимость падает до 0. Время, в течение которого отсутствует возбудимость, называется периодом абсолютной рефрактерности.В это время даже очень сильный раздражитель не может вызвать возбуждение ткани. В фазе восстановления МП возбудимость также начинает восстанавливаться, но она еще ниже исходного уровня. Время восстановления ее от 0 до исходной величины называется периодом первичнойотносительной рефрактерности. Ткань может ответить возбуждением только на сильные, надпороговые, раздражения.Вслед за периодом относительной рефрактерности наступает короткий период экзальтации – повышенной (по сравнению с исходной) возбудимости. По времени он соответствует процессу реполяризации. Заключительный этап одиночного цикла возбуждения – повторное снижение возбудимости ниже исходного уровня (но не до 0), называемое периодом вторичной относительной рефрактерности. Он совпадает с развитием гиперполяризации мембраны. Возбуждение может возникнуть только в том случае, если сила раздражения значительно превысит пороговую. После этого возбудимость восстанавливается, и клетка готова к осуществлению следующего цикла возбуждения.

Рефрактерность - кратковременное снижение возбудимости нервной ткани. Вызвать второй ПД сразу же после возникновения первого нельзя, так как наступает период абсолютной рефрактерности. Способность переходить в активируемое состояние восстанавливается постепенно; через какой-то промежуток времени приложение деполяризующего тока уже вызовет ПД, но последний окажется частично инактивированным, и его амплитуда будет неполной. Период появления неполных ответов называется периодом относительной рефрактерности; он следует за периодом абсолютной рефрактерности (рис. 4, А). Чем медленнее развивается ПД, тем длительнее у него рефрактерный период. Наличие рефрактерного периода ограничивает возможности нервной клетки воспроизводить нервные импульсы, что приводит к существованию предельной частоты возбуждения, которую клетка может пропустить без изменений. Если частота раздражения превысит эту частоту, то последующие импульсы начнут попадать в рефрактерный период предыдущих и наступит трансформация их частоты. Чем длительнее рефрактерность, тем меньше предельная частота. Лабильность - максимальное число импульсов, которое данная структура может передать в единицу времени без искажений

3) Дыхание является одной из жизненно важных функций организма, направленной на поддержание оптимального уровня окислительно-восстановительных процессов в клет­ках. Дыхание -- сложный биологический процесс, который обеспечивает доставку О2 тканям, использование его клетка­ми в процессе метаболизма и удаление образовавшегося СО2.Весь сложный процесс дыхания можно разделить на три основных этапа: внешнее дыхание, транспорт газов кровью и тканевое дыхание.

Внешнее дыхание - это газообмен между организмом и окружающим его атмосферным воздухом. Внешнее дыхание в свою очередь разделяют на два этапа:

• обмен газов между атмосферным и альвеолярным возду­хом;

• газообмен между кровью легочных капилляров и альвео­лярным воздухом (обмен газов в легких).

Транспорт газов кровью — перенос кровью О2 от легких к тканям и СО2 от тканей к легким.Внутреннее, или тканевое, дыхание также можно разделить на два этапа:• обмен газов между кровью и тканями;• потребление клетками О2 и выделение СО2.

Внешнее дыхание осуществляется циклически и состоит из чередования фаз вдоха (инспирации), выдоха (экспира­ции) и дыхательной паузы. У взрослого человека частота ды­хательных движений (ЧД) в состоянии относительного покоя в среднем равна 16—18 в 1 мин, Основным полезным резуль­татом внешнего дыхания является поддержание константы газового состава альвеолярного воздуха. Вдох несколько ко­роче выдоха; их соотношение составляет 1:1,3.