Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция5.DOC
Скачиваний:
6
Добавлен:
28.03.2016
Размер:
152.58 Кб
Скачать

Изотопы водорода

Изотопы водорода

Водород в условиях Земли представлен тремя природными изотопами: 1Н (протий), 2Н (дейтерий D) и 3Н (тритий). Протий и дейтерий относятся к стабильным изотопам, тритий – радиоактивный, возникающий в атмосфере Земли в результате ядерных реакций с космическими лучами. Значительное различие масс 1Н и D определяет возможность их существенного фракционирования в условиях биосферы. Колебания изотопного состава водорода превышают колебания изотопных отношений всех других известных стабильных химических элементов. Самые незначительные колебания плотности (D) отмечаются в земных горных породах, наибольшие колебания характерны для летучих веществ – различных природных вод и органического вещества.

Основная часть водорода Земли связана с кислородом в воде, поэтому колебания его изотопного состава связаны с естественным круговоротом воды. Природная вода состоит из трех стабильных изотопов кислорода и двух стабильных изотопов водорода. Это определяет существование девяти изотопных разновидностей молекул воды, которые встречаются в следующей молекулярной концентрации (%): H216О – 99.73, HD16O – 0.03, D216O – 2.3 10-6, H217O – 0.04, HD17O – 1.2 10-15 , D217O – 0.9 10-9, H218O – 0.20, HD18O – 5.7*10-15, D218O – 4.4*10-9 . Изотопные виды HD18O, D216O и D218O представляют собой «тяжелую воду».

При характеристике изотопного состава водорода применяют изотопную плотность D, ‰ по отношению к стандарту SMOW, принятому за нуль (D SMOW=0 ‰):

D, ‰ = 1000[(Rобразца / Rстандарта ) – 1],

где R = D/H

Величина D служит отличным индикатором генезиса вод. Наиболее значительны колебания величины D в термальных водах и вулканических газах (Н и СН4), которые могут быть и сильно обеднены, и довольно сильно обогащены дейтерием. Но больше всего дейтерия в морской воде; поскольку она выбрана как стандарт, то все значения D получаются отрицательными.

В условиях равновесия между жидкой и парообразной водой между величинами D и 18O наблюдается линейная зависимость:

D = 818O + 10.

Как правило пар обогащается легкими изотопами кислорода и водорода, а остающаяся вода соответственно – тяжелыми. Поэтому, в частности, очень соленые воды, образовавшиеся путем выпаривания морской воды – самые изотопно-тяжелые, как по водороду, так и по кислороду. Это можно использовать для диагностических целей. А именно, если мы имеем дело с рассолом, но его изотопный состав почему-то оказывается близким к таковому для морской воды, то это означает, что данный рассол произошел не путем выпаривания! В частности, есть альтернативный механизм – фильтрация вод через заряженные глинистые мембраны [Дегенс, 1967, c. 181].

Изотопы углерода

Природный углерод состоит из двух стабильных изотопов 12С и 13С (распространенность 98.89% и 1.11%). Изотопный состав углерода выражается отношением 13С/12С или относительной плотностью 13C, которая равна:

13C, ‰ = 1000[(Rобразца / Rстандарта ) – 1], где

R = 13С/12С

В качестве стандарта принят углерод ископаемого моллюска Belemnitella americana из слоев формации PD (Пи Ди) в Южной Калифорнии (обозначается PDB). Для стандарта PDB 13С/12С = 0.01125, а величина 13C (PDB) = 0.

Фракционирование изотопов углерода происходит в процессе его геохимического круговорота. За начало этого круговорота можно принять выделение СО2 из мантийных глубин во время вулканических процессов, а также при термическом разложении известняков и доломитов в условиях метаморфизма. Затем СО2 распределяется между атмосферой и гидросферой. В морской воде СО2 связывается с Са и Mg, образуя известняки и доломиты преимущественно биогенного происхождения. Другая часть СО2 атмосферы и гидросферы поглощается зелеными растениями в процессе фотосинтеза. Подавляющая часть биомассы (около 99.95%) в современной биосфере после гибели растений и животных окисляется с образованием СО2, и лишь небольшая доля (около 0.05%) фоссилизируется в осадках в составе ОВ.

Для того, чтобы ориентироваться в геохимической литературе, где используются изотопные отношения карбонатного и органического углерода, полезно знать характерные изотопные метки природных веществ, участвующих в круговороте углерода (табл. 2 )