Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ATP_gotovye.docx
Скачиваний:
90
Добавлен:
22.02.2016
Размер:
892.9 Кб
Скачать

11. В чем заключается задача наладки регуляторов? Перечислите параметры настройки регуляторов непрерывного действия. На какие типовые пере­ходные процессы принято настраивать параметры таких регуляторов?

Задача наладки регуляторов заключается в том, чтобы примени­тельно к данному объекту выбрать (рассчитать) и установить такие настроечные параметры, которые обеспечили бы процесс регулиро­вания, близкий к оптимальному.

Правильно налаженный регулятор должен обеспечивать оптималь­ное протекание процесса регулирования.

Параметры регуляторов принято настраивать на один из трех типо­вых переходных процессов.

Апериодический переходной процесс Процесс с 20% перерегулированием

Процесс с минимальной площадью отклонения

12. Раскроите существующий объем автоматизации бункера активного вентилирования.

Активное вентилирование - это продувание массы зерна холодным или подогретым воздухом (необходимо при ρ>20%).

•БВ-6, -12.5, 25 и 50.

•К - 878 («Петкус» ГДР)

13. Каковы технологические требования к обеспечению микроклимата в картофелехранилище? Раскройте принцип автоматического управления микроклиматом картофелехранилища в основной период храпения.

ТП хранения картофеля можно раз­делить на 3 периода:

•Лечебный: необходимо поддерживать температуру в межклубневом пространстве на уровне 1565 и высокую относительную влажность воздуха с минимальным воздухообменом.

•Охлаждения: температуру хранимого продукта постепенно снижают до 2-4, периодически проводя активное вентилирование наружным воздухом или смесью, когда температура наруж­ного воздуха не менее чем на 2-3 меньше температуры хранимого продукта.

•Хранения: вентиляция включается при повышении температуры в насыпи до 4 и более (точ­ность 61).

Во всех случаях относительная влажность воздуха должна быть максимальной, но без образова­ния конденсата на картофеле.

В оборудование обеспечения картофелехранилища входит: основной вентилятор, обеспечивающий подачу воздуха в вентиляционно-распределительный канал и тем самым продувание воздухом исполнительным механизмом смесительного клапана, обеспечивающего смешивание наружного и рецеркуляционного воздуха, а также вентилятор и электрокалорифер, обеспечивающий подогрев верхней зоны картофелехранилища. Основной вентилятор срабатывает, если температура фиксируемая в насыпи картофеля отличается от заданной, при этом вентиляционно-распредилительном канале температура выше аварийной (отрицательная). Исполнительным механизмом смесительного клапана управляет пропорц. регулятор датчик которого стоит в вентиляционно-распределительном канале. Этот пропорц. регулятор включается по сигналу от регулятора соотношения фиксирующего, что темперература наружного воздуха ниже заданной картофелехранилища. Что бы исключить образование конденсата по сигналу от датчика температуры, установленного в верхней зоне, срабатывает рецеркуляционный отопительный агрегат, обеспечивающий вентиляцию и обогрев в верхней зоне.

14. Перечислите основные виды сар котлоагрегатов. Раскройте принципы построения автоматизированной системы регулирования па примере па­рового котла типа дквр.

Основные виды САР котельных установок:

• Для котлов - регулирование процесса горения и питания;

•Для деаэраторов - регулирование уровня воды и давления пара.

Регулятор нагрузки котла (на примере ДКВР).

• Состоит из датчика давления типа МЭД (1а), регулирующего при­бора (1б) и ИМ, регулирующего подачу топлива в топку (П-закон реализуется).

Регулятор соотношения топливо-воздух:

Контур строят на базе регулирующего прибора 2б по двухимпульсной схеме. Один импульс поступает от дифманометра 2а типа ДМ, контролирующего дав­ление газа, а второй - от дифманометра 2б типа ДТ2-200, измеряющего раз­ность давлений в воздухопроводе и атмосферного воздуха.

15. Каковы технологические основы управления микроклиматом в теплицах? Раскройте принципы автоматического управления температурой воздуха в теплице.

Оптимальное значение температуры воздуха за­висит от: вырабатываемой культуры, стадии развития культуры, уровня освещенности.

Фотосинтез - процесс связывания солнечной энергии в сухом веществе растения.. Интенсивность зависит от: уровня освещенности, температуры, влажности, газового состава окружающего воздуха

Дыхание - процесс обратный фотосинтезу, со­провождаемый окислением углеводов и выде­лением углекислоты и паров воды.

Определяется температурой и не зависит от уровня освещенности.

График изменения температуры в теплице в течение суток с учетом освещенности Е и времени суток Т.

Нормы технического проектирования для зимних теплиц предусматривают: автоматическое регулирование температуры воздуха; автоматическое регулирование температуры теплоносителя для обогрева поч­вы;

автоматическое регулирование температуры поливной воды; автоматическое регулирование влажности;автоматическое поддержание концентрации растворов минеральных удобре­ний в поливной воде.

Достаточное количество света при высокой температуре ускоряет фотосинтез и накопление углеводов, необходимых для роста растений, низкая освещенность и высокая температура приводит к дефициту углеводов и истощению растений. Низкая температура замедляет приостанавливает рост растения.

Параметры настройки регуляторов получают из передаточных функций, которые описывают основные законы регулирования.

Для П-регулятора настраиваемым параметром является коэффициент пропорциональности. Для И-регулятора - коэффициент пропорциональности и постоянная времени. Для ПИД-регулятора - коэффициент пропорциональности, постоянная времени и время дифференцирования.

Переходной процесс в автоматической системе должен иметь минимальное время регулирования, небольшое динамическое отклонение регулируемой величины, небольшое перерегулирование и минимальную статическую ошибку. Однако удовлетворить все перечисленные требования одновременно не возможно. Параметры регуляторов настраивают на один из трех типовых переходных процессов.

1. Апериодический переходной процесс характеризуется минимальным временем регулирования для объектов с самовыравниванием, небольшим управляющим воздействием, но максимальным динамическим отклонением. Рекомендуется когда объект имеет несколько регулируемых величин и необходимо что бы регулирующее воздействие, для рассматриваемой величины, не оказывало нежелательного влияния на величины.

2. Процесс с 20% перерегулированием. Применяетя для объектов допускающих перерегулирование но чувствительным к большим динамическим отклонениям.

3. С минимальной площадью отклонения величин. Характеризуется малым значением динамического отклонения, но значительным перерегулированием, значительными управляющими воздействиями. Используется для объектов в которых по технологическим требованиям не допускаются большие отклонения регулируемой величины.

Автоматизация бункера вентилирования зерна предусматривает автоматическое управление загрузкой, воздухораспределения в бункере, температурой и влажностью зерна и продуваемого воздуха. Сигнал на загрузку подается вручную, после чего срабатывает привод нории и лебедки на подъем поршня заглушки, последний отключается датчиком положения. Для обеспечения рационального вохдухораспределения в бункере после загрузки, фиксируемой датчиком уровня, подается сигнал на привод лебедки для опускания заглушки на уровень зерна (отключается концевиком фиксирующим уровень зерна и включается вентилятором). Если влажность наружного воздуха больше допустимой то срабатывает датчик влажности и включается калорифер, что бы снизить влажность воздуха. При снижении влажности выносимого воздуха фиксирующего влажность зерна и сигналу от датчика влажности отключается вентилятор и срабатывает сигнализация, после чего оператор переводит режим управления оборудования в режим консервации, когда управление ведут по температуре зерна. Если температура зерна достигает максимального значения – срабатывает вентилятор, при этом что бы снизить влажность воздуха его пропускают через калорифер.

Максимальной интенсивности фотосинтеза соответствует температура 25-35 С, но с учетом дыхания интенсивность, которого также зависит от температуры, снижается до 20-25 С.

Переходные режимы – массивные части растений прогреваются медленнее, отсюда опасность конденсации на них влаги, заболевание растений, поэтому в режиме переходов от ночного к дневному уровню температур скорость изменения параметров не превышает 6 С/час. В ночное время температура t1 поддерживается неизменной; за час до восхода солнца температура повышается до t2, воздух подсушивается и с

восходом солнца вода не конденсируется на растениях и плодах, начинается нормальный процесс фотосинтеза. Если погода пасмурная, то в течении светового дня поддерживается температура t3=t2. При солнце начиная с освещенности 2000 лк. Повышают температуру, в соответствии с величиной освещенности до t4, после этого открывают вентиляционные фрамуги и избыток тепла уходит благодаря вентиляции. Управление температурой воздуха в теплице осуществляется при помощи двух групп водяных калориферов; коньковой и боковой систем форточек. Греющая вода из котельной подается через клапан отопления; открытие форточек вентиляции производится при помощи исполнительных механизмов. Принцип организации управления воздухом осуществляется схемой: позиционный переключатель поочередно переключает датчики температуры и задатчики к измерительному мосту через каждые 4 мин., при этом блок задержки обеспечивает некоторую выдержку времени подключения исполнительных механизмов, необходимую для исключения подачи ложного сигнала, возникающих в переключателях датчика, сигнал разбаланса с моста усиливается усилителем U и поступает на пороговые элементы, которые подают сигнал на включение исполнительных механизмов в зависимости от отклонения температуры воздуха от данной, t=+2-+3 C на механизм верхней правой и верхней левой фрамугами; +4-+5 механизм боковой правой и боковой левой фрамуги; “-1” – клапан отопления включен; “-3” и ”- ” калорифер №1 и №2; при +6 и -6 срабатывает аварийная сигнализация. Блок поправок вместе с датчиками освещенности автоматически корректирует заданное значение t в зависимости от освещенности в теплице.

АСР питания котла:

• Контур аналогичен контуру нагрузки котла и состоит из датчика уровня воды в котлоагрегате типа ДМ (дифманометр), регулирующего прибора 3б, реали­зующего П-закон регулирования и ИМ, обеспечивающего непрерывную подачу воды в котел.

АСР разряжения:

• Импульс к РП поступает от дифманометра 4а типа ДТ2-50, измеряющего раз­ряжение в топке. РП подает сигнал на заслонку управляющую сервомотором. При полностью закрытой заслонке и недостаточном разряжении в топке вклю­чается дополнительно вытяжной вентилятор.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]