Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
277
Добавлен:
13.02.2016
Размер:
388.61 Кб
Скачать

1. Биохимия - это наука, изучающая качественный и количественный состав, а также пути, способы, закономерности, биологическую и физиологическую роль превращения вещества, энергии и информации в живом организме.

Задача врача заключается в том, чтобы предотвратить развитие патологического процесса в организме и ее решение возможно лишь при своевременной и правильной диагностике, назначении адекватного лечения, которое возможно лишь в том случае, если врач понимает сущность происходящего в организме.

1. Познание молекулярных механизмов физиологических, генетических и иммунологических процессов жизнедеятельности в норме и при патологии и действии на организм различных факторов.

2. Совершенствование методов профилактики, диагностики и лечения заболеваний.

3. Разработка новых лекарственных средств, нормализующих обменные процессы.

4. Разработка научных основ, рационального, сбалансированного питания, здорового образа жизни.

В зависимости от объекта исследования или направления исследования биохимию подразделяют на такие разделы как:

- общая биохимия которая изучает общие вопросы химических основ жизнедеятельности различных организмов

- бионеорганическая химия изучающая роль и значение в процессе жизнедеятельности комплексов неорганических ионов с органическими соединениями

- биоорганическая химия исследующая физико-химические основы функционирования живых систем

- биохимия человека и животных, (растений, микроорганизмов)

- техническая биохимия, изучающая состав пищевых продуктов, химическую основу технологических процессов их хранения, переработки и т.д.

- сравнительная (эволюционная) биохимия которая исследует биохимические процессы в сравнительном (эволюционном) аспекте

- радиационная биохимия изучает биохимические основы радиационного повреждения и способы его профилактики в живой организме

- медицинская (клиническая) биохимия исследует биохимические основы патологических процессов.

Метод

Характеристика (пример)

Исследование на уровне

целого организма

1. удаление органа (гепатэктомия)

2. изменение диеты (голодание, усиленное питание)

3. прием лекарств

4. введение токсинов

5. наблюдение за животными со специфическими заболеваниями (сахарный диабет)

6. использование сложным методов (ЯМР-спектроскопия и др.)

Перфузия изолированных органов

наиболее пригодны сердце, печень, почки

Инкубация тканевых срезов

чаще используются срезы печени

Инкубация целых клеток

наиболее пригодны клетки крови и печени

Изучение гомогенатов

1. работа с бесклеточными препаратами

2. можно удалять или добавлять различные вещества и наблюдать за результатами

3. можно фракционировать различные органеллы путем дифференциального центрифугирования

Исследование изолированных органелл

широко используются митохондрии, микросомы, рибосомы и др.

Субфракционирование изолированных органелл

например митохондрий для выделение комплексов дыхательной цепи

Выделение и характеристика ферментов и метаболитов

обязательно при описании любой химической реакции и метаболического пути

Клонирование генов, кодирующих ферменты и др. белков

исследование особенностей структуры и регуляции гена и первичной структуры белка, кодируемой этим геном

В 10 – 13 вв. в Европе с развитием алхимии стал накапливаться материал о составе органических соединений.

В 14 - 17 вв. получила развитие ядрохимия. Важнейшим представителем был Парацельс. Он предположил, что в основе всех заболеваний лежит нарушение хода химических реакций и что лечить их надо тоже химическими веществами.

Ядрохимия дала много практического для медицины. Кроме этого ятрохимия поддерживала виталистические взгляды.

В 17 – 18 вв. широкое признание получила теория, которая объясняла процессы горения выделением из горящего тела особого невесомого вещества и была опровергнута Ломоносовым и Лавуазье, которые открыли закон сохранения энергии.

В 1828 г. Ф. Вёлер впервые синтезировал мочевину, открыв тем самым эпоху органического синтеза.

В 1839 г Ю. Либих установил, что в состав пищи входят белки, жиры и углеводы.

В 1845 г. Г. Кольбе синтезировал уксусную кислоту

В 1854 г М. Бертло синтезировал жиры.

В 1861 г А.М. Бутлеров синтезировал углеводы.

В 1847 г. Ходнев издал первый учебник биохимии.

В 1903 г. было введено понятие «биохимия».

До 20-х годов получила развитие биохимия углеводов и липидов.

30-е годы - биохимия втаминов и гормонов.

40-50-е годы – биохимия ДНК, РНК, белков.

Основоположником отечественной биохимии является профессор Александр Яковлевич Данилевский (1839-1923), который в 1863 г. создал первую кафедру биохимии в Казанском университете, создал первую русскую школу биохимиков.

Значение БХ для врача сводится к тому, чтобы решать на молекулярном= уровне задачи фундаментальные, общебиологические, включая проблему зависимости человека от экосистемы, которую необходимо не только понимать, но защищать и научиться разумно ею пользоваться.

2. БЕЛКИ – это ВМС, состоящие из аминокислот (всего 20) и имеющие 4 уровня структурной организации, а в настоящее время выделяют еще и пятый уровень.

Уровни структурной организации, формы и размеры белковых молекул.

ПЕРВИЧНАЯ СТРУКТУРА – это последовательность аминокислот в полипептидной цепи. Стабильность обусловлена ковалентными пептидными связями, возможно участие небольшого числа дисульфидных связей. Первичная структура имеет ряд особенностей:

1. Ее стабильность обусловлена ковалентными пептидными связями, возможно участие небольшого числа дисульфидных связей.

2. В полипептидной цепи могут быть обнаружены разнообразные комбинации аминокислот.

3. Каждый индивидуальный белок является уникальной первичной структурой и замены аминокислот приводят к изменению физикохимических и биологических функций.

4. В некоторых ферментах, обладающих близкими свойствами встречаются сходные последовательности аминокислот (в частности активных центров).

ВТОРИЧНАЯ СТРУКТУРА - конфигурация полипепидной цепи, то есть наибольшее свертывание полипептидной цепи в спиральную конформацию. Так как возникла двойная связь, то вращение затрудняется и формируется водородная связь, что приводит к возникновению спиральной конформации полипептидной цепи (а –спирали). Существует также в-конформация вторичной структуры (две или более полипептидных цепей, расположены параллельно между этими цепями точно образуются водородные связи)

ТРЕТИЧНАЯ СТРУКТУРА – пространственная ориентация полипептидной цепи в определённом объёме в(трёхмерном пространстве). Основной движущей силой в возникновении третичной структуры является взаимодействие радикалов аминокислот с молекулами воды. При этом полярные гидрофобные радикалы аминокислот как бы вталкиваютя внутрь белковой молекулы, образуя там «сухие» зоны, в то время как полярные гидрофильные радикалы оказываются ориентированными в сторону воды.

Под четвертичной структурой белка понимают способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или разной) первичной, вторичной и третичной структурой, и формирование единого макромолекулярного образования в структурном и функциоанльном отношении. Каждая отдельно взятая полипептидная цепь, которая называется протомером, чаще всего не обладает биологической активностью. Эту способность белок приобретает при объединении с другими протомерами. Образовавшуюся при этом молекулу называют мультимером. Мультимерные белки чаще всего построены из чётного числа протомеров. Функционально активная часть мультимера называется субъеденицей.

ПЯТЫЙ УРОВЕНЬ организации представлен в виде ферментных комплексов, которые катализируют цепной и метаболический путь. Эти комплексы называются метаболонами, они чаще связаны с клеточными мембранами.

3. Большое число белков и их многообразие требует создания классификации белков. Чаще всего пользуются функциональной классификацией, разделяя их по выполняемым ими функциям (см выше).

Можно разделить белки по степени сложности их молекул на простые и сложные. Простые построены только из аминокислот, а сложные содержат в своем составе дополнительные небелковые группы. Такие группы называют простетическими.

По форме белковой молекулы белки делят на глобулярные (шаровидные) и фибриллярные (нитевидные).

По растворимости в воде выделяют водорастворимые, солерастворимые, нерастворимые в воде. Последние характерны для биологических мембран.

Классификация. Выделяют две группы белков:

простые (протеины); построены только из аминокислот и при гидролизе распадаются только на аминокислоты: альбумины, гистоны, глобулины, проламины, протеиноиды;

сложные (протеиды); состоят из простого белка и небелкового комплекса (протетической группы): фосфопротеиды, хромопротеиды, нуклеопротеиды, гликопротеиды, липопротеиды.

Простые белки построены только из аминокислот. Сложные белки содержат небелковые компоненты

3 структура белка. Для уникального пространственного расположения атомов в молекуле белка (укладки полипептидной цепи в пространстве), которое "запрограммированно" самой аминокислотной и поэтому образуется самопроизвольно, тем не менее нужны помощники. Эти помощники также являются белками и получили название шапероны. Впервые они были открыты как "белки теплового шока" (hsp 60 и hsp 70). Их функция заключается в защите складывающейся полипептидной цепи от взаимодействия с другими многочисленными клеточными белками и, возможно, в ускорении этого процесса.

Функции белков:

1.Каталтическая (обеспечивает поток вещества, энергии, информации: около 2500 ферментов являются

белками).

2. Транспортная (гемоглобин переносит кислород и углекислый газ, альбумины, трансферин, церулоплазмин).

3. Трофическая (резервная: альбумины, белки мышц, козеин, избыток белка превращается в липиды и углеводы).

4. Сократительная (локомоторная: актин, миозин).

5. Пластическая (структурная: коллаген, кератин, эластин).

6. Регуляторная (гормоны, альбумины регулируют осмотическое давление, водно-солевой баланс).

7. Защитная (интерфферон, протромбин, фибриноген).

8. Рецепторная (белки являются рецепторами, с помощью которых происходит восприятие сигнала из внешней среды).

9. Энергетическая.

Кроме всего этого белок - это главный злемент регуляции наследственного материала, генератор энергетического топлива в организме.

4. Под влиянием различных физических и химическх факторов белки подвергаются свёртыванию и выпадают в осадок, теряя свои нативные свойства. Денатурация – это изменение общего плана (конформации) уникальной структуры нативной молекулы белка, приводящее к потере биологических функций и физико- хмических свойств (растворимости).

Факторы, вызывающие денатурацию:

1. Температура (большинство белков денатурирует при нагревании до 60 градусов).

2. Ионизирующее излучение.

3. Химические факторы:

а) концентрированные кислоты и щёлочи;

б) водоотнимающие растворы;

в) тяжёлые металлы;

г) гемолитические яды.

Механизм денатурации.

В основе денатурации лежит освобождение энергии, которое возникает в результате разрушения связей (в основном водородных, дисульфидных). Пептидные связи не затрагиваются, поэтому первичная структура сохраняется. При этом происходит освобождение гидрофобных участков и понижается растворимость, так как гидрофобные участки взаимодействуют друг с другом. За счёт дополнительной энергии образуются случайные беспорядочные структуры. При непродолжительном действии и быстром удалении денатурирующего агента возможна Ренатурация белка с полным восстановлением исходной структуры и нативных свойств.

Признаки денатурации:

1. снижение растворимости, особенно в ИЭТ, и вязкости белковых растворов;

2. освобждение функциональных СН - групп;

3. изменение характера рассеивания рентгеновских лучей;

4. снижение или потеря биологической активности (каталитической, антигенной, гормональной).

Состояние, близкое к денатурации, наблюдается при взаимодействии антитела с антигеном.

Практическое использование денатурации:

  1. используя процесс денатурации в мягких условиях, его используют для получения и хранения ферментов в низких температурах.

  2. явление денатурации используют в пищевой промышлености (для получения яичного порошка, консервов).

  3. в медицине денатурацию используют для осаждения чужеродных белков, при ожогах, обморожениях.

5. Методы выделения и определения белков в растворах.

Количественное определение общего белка в сыворотке крови биуретовым методом.

В пробирку вносят 0,05 мл сыворотки крови, а затем - 2,5 мл биуретового раствора. Осторожно перемешивают. Через 30 минут в кювете при зелёном светофильтре (540 нм). Концентрацию исследуемого раствора сравнивают с графиком концентрации белка. Нормальное содержание белка в сыворотке у взрослых 6,5% - 8,5%, у детей - 5,6%- 8,55%.

Принцип метода. В щелочной среде пептидные связи белка образуют с ионами двухвалентной меди комплекс фиолетового цвета. Интенсивность окраски раствора прямо пропорциональна концентрации белка, определяемой фотометрически.

Клинико-диагностическое значение. Нормальное содержание белка в сыворотке крови у взрослых людей – 65–85 г/л, у детей – 58–85 г/л.

Повышенное содержание белка (гиперпротеинемия) встречается редко (при ревматизме, плазмоцитозе). Пониженное содержание белка (гипопротеинемия) – при злокачественных опухолях, дистрофии.

Рефрактометрический метод:

В основе лежит не одинаковая способность различных сред преломлять проходящие через них лучи света. Отношение sin угла падения к sin угла преломления называется коэффициентом преломления. Попадатель преломления вычисляется при помощи рефрактометра и соответственно этому значению находится процент содержания белка в сыворотке по таблице.

Для количественного анализа белков можно использовать определение белкового азота. Для этого пробу сжигают при высокой температуре в присутствии серной кислоты и перекиси водорода (окислитель). Происходит минерализация, при этом азот в форме аммиака связывается серной кислотой (сульфат аммония). Количество сульфата аммония определяют или с реактивом Несслера, или после перегонки аммиака титрометрически.

Значительно чаще для количественного определения используют цветные реакции (биуретовую или реакцию на фенольные группы Lowry). Биуретовая реакция основана на том, что в щелочной среде ионы меди реагируют с пептидными группировками, образуя комплексные соединения, окрашенные в фиолетовый цвет. Интенсивность окраски фотометрируется. Сочетание биуретовой реакции и реакции на фенольные группировки используется в методе Lowry.

Для количественного определения индивидуальных белков в сложных смесях белков большой популярностью пользуются иммунологические методы. При взаимодействии белка со специфической антисывороткой образуется мутный раствор. Интенсивность помутнения может быть измерена колориметрическими методами.

6. Многие белки в своем составе, помимо аминокислот, могут содержать и небелковые компоненты. Такие небелковые соединения в составе белков получили название простетических групп. В зависимости от химического состава простетической группы сложные белки можно разделить на несколько классов:

1. Хромопротеины. Это белки, простетическая группа которых имеет окраску. К ним относятся многие белки, содержащие металлы. Например, церулоплазмин - белок, содержащий медь, имеет синюю окраску. Белок, переносящий витамин B12, имеет розовый цвет (этот витамин содержит кобальт в своем составе). Хорошо изучены белки, содержащие железо: гемоглобин, миоглобин, цитохромы. Они имеют красную окраску. Присутствие витамина B2 придает белкам желтый цвет (флавопротеины).

2. Гликопротеины. Это белки, простетическая группа которых содержит углеводы. Гликопротеины - это небольшая часть белково-углеводных комплексов, к которым относятся также протеогликаны и мукопротеины. Этим белкам принадлежит важная роль в структурной организации клеток и тканей, они выполняют защитные функции. Основная часть внеклеточных белков - это гликопротеины.

3. Липопротеины. Это белки, простетическая группа которых содержит липиды. Они обеспечивают транспорт липидов в крови, являются компонентами биологических мембран.

4. Металлопротеины. Это белки, частично перекрывающиеся с хромопротеинами. Простетичская группа у них представлена металлами. Они транспортируют или участвуют в депонировании металлов (ферритин, трансферрин).

5. Нуклеопротеины. Простетическая группа у таких белков - нуклеиновая кислота. Различают дезоксирибонуклеопротеины (простетическая группа - ДНК) и рибонуклеопротеины (простетичесая группа - РНК). Им принадлежит важная роль в сохранении, передаче и реализации генетической информации.

6. Фосфопротеины. Белки, которые содержат в своем составе фосфорную кислоту, популярны в клетке потому, что процесс фосфорилирования является способом влияния на конформацию белка и поэтому используется в системах регуляции процессов жизнедеятельности.

Простетические группы соединяются разными типами связей. Так для нуклеопротеинов характерной является ионная связь, у гликопротеинов и фосфопротеинов преобладает ковалентная связь, у липопротеинов - силы гидрофобного взаимодействия, металлопротеинов - донорно-акцепторные связи.

Аллостерические эффекторы. Влияние эффекторов на ферменты можно объяснить просто, добавив к сказанному выше, что у фермента есть два центра связывания лигандов. Роль одного лиганда будет выполнять субстрат, взаимодействующий с активным центром, а второй лиганд – эффектор, связывающийся со специальным аллостерическим центром.

Регуляция активности с помощью гормонов.

Гормональная регуляция осуществляется на генетическом уровне путём обратимого фосфорилирования. Например, под действием адреналина происходит активация процесса распада гликогена. В ходе этого процесса образуется небелковое соединения – у-АМФ. у-АМФ – внутриклеточный гормон (вторичный посредник) является аллостерическим регулятором большого числа протеинлипаз. у-АМФ образуется из АТФ под действием аденилатциклаз.

7. Ферменты, как и белки, делятся на 2 группы: простые и сложные. Простые целиком и полностью состоят из аминокислот и при гидролизе образуют исключительно аминокислоты. Их пространственная организация ограничена третичной структурой. Это в основом ферменты ЖКТ: пепсин, трипсин, лизацим, фосфатаза. Сложные ферменты кроме белковой части содержат и небелковые компоненты. Эти небелковые компоненты отличаются по прочности связывания с белковой частью (аллоферментом). Если константа диссоциации сложного фермента настолько мала, что в растворе все полипептидные цепи оказываются связанными со своими небелковыми компонентами и не разделяются при выделении и очистке, то небелковый компонент называется простетической группой и рассматривается как интегральная часть молекулы фермента.

Под коферментом понимают дополнительную группу, легко отделяющуюся от аллофермента при диссоциации. Между аллоферментом и простейшей группой существует ковалентная связь, довольно сложная. Между аллофермнтом и коферментом существует нековалентная связь (водородные или электростатические взаимодействия). Типичными представителями коферментов являются :

В1 - тиамин; пирофосфат (он содержит В)

В2 - рибофлавин; ФАД, ФНК

РР - НАД, НАДФ

Н – биотин; биозитин

В6 - пиридоксин; пиридоксальфосфат

Пантотеновая кислота: коэнзим А

Многие двухвалентные металлы (Cu, Fe, Mn, Mg) тоже выполняют роль кофакторов, хотя и не относятся ни к коферментам, ни к простетическим группам. Металлы входят в состав активного центра или стабилизируют оптимальный вариант сруктуры активного центра.

Кофакторы – любой фактор влияющий на активность фермента (многие двухвалентные металлы (Сu2+, Fe2+, Fe3+, Mn2+, Мg2+, Ca2+)). Металлы входят в состав активного центра или стабилизируют оптимальный вариант структуры активного центра. Fe2+, Fe3+ гемоглобин, каталаза, пероксидаза.

Строение НАД и НАДФ.

НАД и НАДФ являются коферментами пиридинзависимых дегидрогеназ. Способность НАД и НАДФ играть роль точного переносчика водорода связана с наличием в их структуре амида никотиновой кислоты.

В клетках НАД – зависимые дегидрогеназы участвуютв процессах переноса электронов от субстрата к О. НАДФ – зависимые дегидрогеназы играют роль в процессах биосинтеза. Поэтому коферменты НАД и НАДФ отличаются по внутриклеточной локализации: НАД концентрируется в митохондриях, а большая часть НАДФ находится в цитоплазме.

Строение ФАД и ФМН.

ФАД и ФМН являются простетическими группами флавиновых ферментов. Они очень прочно, в отличие от НАД и НАДФ, присоединяются к аллоферменту. Активной частью молекулы ФАД и ФМН является изоаллоксадиновое кольцо рибофлавин, к атомам азота которого могут присоединятся 2 атома водорода.

9. Активный (субстратный) центр – зто совокупность функциональных групп, расположенных в разных участках полипептидной цепи, но близко структурно и функционально ориентированных (в процессе укладки третичной структуры) и имеющих прямое отношение к катализу. Этот центр состоит из функциональных групп и радикалов: SH – (цистеин), - ОН (серин), - СООН (аспарагин), имидазольное кольцо гистидина и фенилаланина.

Активный центр включает в себя:

1) каталитический участок или центр, непосредственно взаимодействующий с субстратом, осуществляющий катализ;

2) контактная площадка, осуществляющая специфическое сродство фермента к субстрату и является местом фиксации субстрата к поверхности фермента;

3) включительные участки – карман, ложбинки.

Предполагается, что формирование активного центра фермента начинается уже на ранних этапах синтеза белка-фермента на рибосомах, когда линейная однотипная структура полипептидной цепи превращается в трёхмерное тело строго определённой конфигурации, точнее активный центр формируется из функциональ – ных групп различных аминокислот.

У олигомерных ферментов (имеющих четвертичную структуру) имеются центры аллостерической регуляции – это участки связывания фермента с низким молекулярным веществом (эффектором или модификатором), имеющим иную, чем субстраты или продукт, структуру (АТФ, АДФ, НАД, промежуточные метаболиты.

Присоединение эффектора к аллостерическому центру приводит к изменению третичной структуры и соответственно конфигурации активного центра, вызывая снижение или повышение энзиматической активности. В связи с этим существует и два пространственно удалённых аллостерических центра: активации и ингибирования. Ферменты, активность которых контролируется состоянием как активного, так и аллостерического центров, называютсяаллостерическими ферментами.

Все ферменты и метаболиеские процессы компартментализованы (раздельны и изолированы). В нормальной клетке находится около 1000 ферментов. Упорядоченное взаимодействие ферментов достигается путём многоуровневой регуляции и компартментализации. Зная локализацию ферментов в клетке и определяя их активность в крови, можно судить о степени деструкции ткани.

Ядро: локализованы РНК – полимеразы, НАД – синтетаза, ферменты, участвующие в репликации ДНК.

Митохондрии: ферменты тканевого дыхания, окислительного фосфорилирования, ферменты в-окисления жирных кислот, цикла Кребса, синтеза мочевины.

Лизосомы: гидролитические ферменты с оптимумом рН в области 5 (пептиды, эстеразы).

Рибосомы: ферменты белкового синтеза.

ЭПС: ферменты синтеза липидов, ферменты гидроксилирования, ферменты детоксикации (метилирования, ацетилирования), коньюгации.

Мембраны: Na –K –АТФаза, аденилатциклаза, ферменты транспорта субстратов.

Цитоплазма: ферменты гликолиза, активации аминокислот, синтеза жирных кислот.

Мультиферментные системы локализуются в структуре органелл таким образом, что каждый фермент располагается в непосредственной близости от следующего фермента данной последовательности реакции. Благодаря также компартментализации в клетке могут одновременно протекать 2 несовместимых процесса: в-окисление жирных кислот в митохондриях и синтез жирных кислот в цитоплазме).

Под органоспецифичностью понимают наличие метаболических путей, присущих только данному органу. Следовательно, органоспецифические ферменты – это ферменты, катализирующие определённые метаболические пути, присущие определённому органу.

Хотя органы и имеют различные выражения того или иного пути, они имеют важное значение для диагностики многих заболеваний путём определения их активности. Так, для печени характерна высшая активность АЛаТ, АсаТ, сорбитдегидрогеназа, ГДГ. Причём активность АЛаТ выше, чем АСаТ, так как АСаТ лучше спрятана во внутренних печёночных структурах.

Почки – щелочная фосфатаза.

Простата – кислая фосфатаза.

Миокард – ЛДГ1, ЛДГ2, НН и НВ изоферменты.

При нарушении целостности тканей этих органов, ферменты выделяются в сыворотку крови, где их активность резко возрастает. В зависимости от того, активность какого фермента возросла, можно судить не только о локализации патологического процесса, но и о степени его тяжести. Но для более конкретной и точной диагностики заболевания (для определения интенсивности и глубины повреждения ткани) нужны маркёрные ферменты, принадлежащие определённой конкретной органелле.

10. Фермент взаимодействует с субстратом согласно этим трём теориям:

1-й этап: происходит ориентация субстрата относительно субстратного центра фермента и его постепенное

« причаливание » к « якорной» площадке.

2-й этап: жёсткая фиксация на « якорной» площадке и подгонка структур активного центра к структурам субстрата.

3-й этап: непосредственный катализ.

E

S -------- P + Q

0 ) S + E =====ES ===== E + P

подстадии 1) E + S =====ES

2)ES =====ES* (новая модификация субстрата)

3) ES*=====ES**

4) ES**======ES***

5) ES***=====EP

6) EP======E + P

Эта теория промежуточных соединений, согласно которой после образования ЕS-комплекса продолжает насыщаться субстратом до тех пор, пока субстрат не превратится в продукт, после чего происходит отщепление Е от образовавшегося из S продукта (Р).

В реакциях анаболизма А + В ----- АВ фермент иожет соединяться как с одним, так и с другим субстратом, или с обоими субстратами:

ЕА

Е ЕАВ -----Е + АВ

ЕВ

В реакциях катаболизма: АВ -------- А + В

  1. АВ + Е ------- АВЕ

  2. АВЕ ------- А + ВЕ АВ + Е ------ А + В + Е

  3. ВЕ ------- В + Е

В образовании фермент –субстратного комплекса учавствуют водородные связи, электростатические и гидрофобные взаимодействия, а также в ряде случаев ковалентные и координационные связи.

Следует отметить, что для каталитической активности фермента существенное значение имеет пространственная структура активного центра, в которой жёсткие участки а-спиралей чередуются гибкими, эластичными линейными отрядами, которые обеспечивают динамичность, пластичность, способность изменяться под действием субстрата, что и лежит в основе теории « индуцированного» соответствия. Причём для каталитического процесса существенное значение имеет не только пространственная комплементарность между ферментом и субстратом, но и наличие электростатического соответствия, обусловленного спариванием противоположно заряженных групп субстрата и активного центра фермента. С термодинамической точки зрения ферменты ускоряют химические реакции за счёт энергии активации.

Энергия активации – энергия, необходимая для перевода всех молекул моля вещества в активное состояние при данной температуре, то есть энергия, которая необходима молекуле, чтобы преодолеть энергетический барьер. Фермент снижает энергию активации путём увеличения числа активированных молекул, которые становятся реакционноспособными на более низком энергетическом уровне, то есть снижается и энергетический барьер.

Кривая, характеризующая ход неферментативных реакций.

Кривая, характеризующая ход ферментативных

реакций.

Общая теория ферментативного катализа постулировала, что фермент Е сначала обратимо и относительно быстро связывается с со своим субстратом S в реакции:

E + S = ES, Образовавшийся при этом фермент-субстратный комплекс ES затем распадается в второй более медленной (лимитирующей) стадии реакции: ES = Е + Р.

Теория промежут связей:

1.Е+S=ES

2.ES=ES*

3.ES*=ES**

4.ES**=EP

5.EP=E+P

Этапы фермент катализа:

1 этап: происходит сближение и ориентация субстрата относительно субстратного центра фермента и его постепенное «причаливание» к «якорной» площадке.

2 этап: напряжение и деформация: индуцированное соответствие - происходит присоединение субстрата, которое вызывает конформационные изменения в молекуле фермента приводящие к напряжению структуры активного центра и деформации связанного субстрата.

3 этап: непосредственный катализ.

Соседние файлы в папке Экзамен