Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Неорганика6-11.docx
Скачиваний:
59
Добавлен:
04.06.2015
Размер:
485.85 Кб
Скачать

Оксид азота(V) n2o5.

Это вещество очень неустойчиво и в течение нескольких часов распадается, при нагревании — со взрывом:

2N2O5 = 4NO2 + O2

При растворении N2O5 в воде образуется азотная кислота.

Высший оксид азота является сильным окислителем, например:

N2O5 + I2 = I2O5 + N2

Азотная кислота HNO3. Азотная кислота HNO3 — одна из важнейших неорганических

кислот. Это летучая бесцветная жидкость, с резким запахом, смешивается с водой в любых пропорциях. При переливании ее на воздухе образуется туман, состоящий из мельчайших капелек азотной кислоты, поэтому чистую (100 %-ю) HNO3 называют дымящей. В лабораториях обычно используют не дымящую, а более дешевую 68 %-ю HNO3. Такую кислоту называют концентрированной. В промышленности ее получают каталитическим окислением аммиака кислородом воздуха на платиновом катализаторе:

4NH3 + 5O2=6H2O + 4NO

с последующим окислением NO: 2NO + O2 = 2NO2

и поглощением образующегося NO2 водой при избытке воздуха:

4NO2 + O2 + 2H2O = 4HNO3

Дымящая или концентрированная HNO3 при хранении на свету вскоре приобретает

бурую окраску за счет растворения оксида азота(IV), образующегося при ее разложении: 2HNO3 = 2NO2 + Н2O + l/2 O2

Такую кислоту хранят в темных склянках.

Молекулы HNO3 как в газовой, так и в жидкой и твердой фазах имеют плоское строение. Отличительной особенностью HNO3 является ее высокая окислительная способность. Азотная кислота при нагревании легко окисляет многие неметаллы: иод,

серу, уголь, фосфор, а на холоде — иодоводород, сероводород и их соли:

6HI + 2HNO3 = 3I2 + 2NO + 4Н2O

+HNO3

Разб. Конц.

Актив. Ме (в том числе и Al, Zn, Mg)

N2O

N2O

Сред. Актив. Ме

NO или N2

NO2

Неактив. Ме (Cu,Hg, Ag)

NO

NO2

Азотистая кислота hno2.

Азотистая кислота в чистом виде не выделена и существует лишь в растворах, которые получают на холоде подкислением растворов ее солей:

Ba(NO2)2 + H2SO4 = 2HNO2 + BaSO4

Эти растворы имеют голубую окраску, они относительно устойчивы при 0 °С, а при нагревании до комнатной температуры разлагаются: 3HNO2= HNO3 + 2NO + H2O

Азотистая кислота легко диспропорционирует.

Окислительные свойства и прочность HNO3 и HNO2 удобно сопоставить с помощью диаграммы вольт-эквивалент — степень окисления. Легко заметить, что значение вольт-эквивалента HNO2 лежит выше прямой, соединяющей значения вольт-эквивалентов NO и HNO3. Следовательно, G реакции диспропорционирования оказывается меньше нуля, иными словами, HNO2 является неустойчивой кислотой и стремится диспропорционировать на NO и HNO3. Кроме того, в разбавленных растворах одинаковой концентрации (0,1 М) HNO2 оказывается сильным окислителем, по силе превосходящим даже HNO3. Так, 0,05 М HNO2, мгновенно окисляет иодид калия:

2NaNO2 + 2H2SO4 + 2KI = I2 + 2NO + K2SO4 + Na2SO4 + 2H2O

а азотная кислота той же концентрации с KI не реагирует. Это следует и из диаграммы вольт-эквивалент—степень окисления. Действительно, наклон прямой, соединяющей значения вольт-эквивалентов HNO2 и NO, оказывается круче, чем в случае пары HNO3 и NO. Атом азота в HNO2 находится в промежуточной степени окисления, поэтому для азотистой кислоты и ее солей характерны не только окислительные, но и восстановительные свойства. Так, нитриты обесцвечивают подкисленный раствор перманганата калия: 5KNO2 + 2KMnO4 + 3H2SO4 = 2MnSO4 + 5KNO3 + K2SO4 + 3H2O

Нитриты щелочных, щелочноземельных металлов и аммония — бесцветные или желтоватые кристаллические вещества, хорошо растворимые в воде и плавящиеся без разложения. Нитриты переходных металлов в воде малорастворимы, а при нагревании легко разлагаются.

Отношение нитратов металлов к нагреванию.

Ме находящиеся левее Mg (кроме Li): МеNO2+O2

Ме находящиеся между [Mg и Cu] (и Li): MeO+NO2+O2

Ме находящиеся правее Cu: Ме+NO2+O2

Азотноватистая (гипоазотистая) кислота H2N2O2. Бесцветные кристаллы. Азотноватистая кислота — слабая и очень неустойчивая. Она и ее соли проявляют восстановительные свойства. При обезвоживании H2N2O2 концентрированной H2SO4 образуется оксид азота N2O, который формально можно рассматривать как ее ангидрид.

Нитроксиловая кислота H4N2O4. В свободном виде она неустойчива.

  1. Все щелочные металлы взаимодействуют с водой, выделяя водород:

2Ме+2H2O=2МеOH+H2

Эта экзотермическая реакция протекает очень быстро, натрий часто воспламеняется, а более тяжелые металлы реагируют со взрывом. Относительно низкая активность лития по отношению к воде определяется прежде всего кинетическими, а не термодинамическими причинами: литий наиболее твердый из щелочных металлов и имеет самую высокую температуру плавления, поэтому он медленнее дробится на капли и реагирует спокойнее других щелочных металлов.

Состав продуктов, образующихся при сгорании щелочных металлов на воздухе или в кислороде, зависит от природы металла. Так, литий образует оксид Li2O, натрий — пероксид Na2O2, калий, рубидий и цезий — супероксиды (надпероксиды) КO2, RbO2, CsO2. Все эти вещества имеют ионную кристаллическую решетку. Пероксиды: ст.окисл. -1, а супероксиды (надпероксиды) ст.окисл .

Взаимодействие с серой: При сплавлении натрия с серой образуются персульфиды типа Na2S2, Na2S3, Na2S4 и Na2S5.

Li не образует полисульфидов. Остальные образуют: K2S+nS=K2Sn

Э2S гидролизуются медленно, окисляются до тиосульфатов:

2Na2S+2O2+H2O=Na2S2O3+2NaOH

Взаимодействие с водородом:

Получают: Li(расплав)+H2=2LiH

NaH,KH,Cs,Rb разлагаются при нагревании. Все гидролизуются в воде: 2LiH+2H2O=2LiOH+H2

Взаимодействие с галогенами:

LiF- малорастворим. LiCl,LiBr,LiI-гигроскопичны, образуют кристаллогидраты.

NaГ, KГ, CsГ, RbГ- хорошо растворимые соли.

Прочность связи Li-Г в ряду F, Cl, Br, I уменьшается, причина- сильное поляризующее влияние иона лития.

Взаимодействие с азотом:

Li3N синтезируется при обычных условиях. Остальные нитриды получают действием тихого электрического разряда на пары щелочных металлов в атмосфере азота. Они не устойчивы. В воде гидролизуются: Li3N+3H2O=3LiOH+NH3

Оксиды, гидроксиды, соли.

Оксиды М2O их можно получить путем дозированного окисления металлов, однако в

этом случае конечный продукт будет содержать примеси. Цвет оксида изменяется

от белого (Li2O и Na2O) к желтому (K2O, Rb2O) и оранжевому (Cs2O). Удобным способом получения оксида натрия является взаимодействие натрия с расплавленным едким натром: 2NaOH + 2Na=2Na2O + H2

Для всех щелочных металлов получены озониды МO3, в состав которых входит парамагнитный ион [O3]-. Солеобразные КO3, RbO3, CsO3 получают действием озона на пероксиды, супероксиды или гидроксиды: КO2 + O3 = КO3 + O2

Все озониды представляют собой оранжево-красные кристаллические вещества. Они чрезвычайно взрывоопасны и неустойчивы.

Пероксиды, надпероксиды и озониды щелочных металлов при нагревании pазлагаются. Их термическая устойчивость увеличивается с ростом радиуса катиона. Пероксиды, надпероксиды и озониды являются сильными окислителями:

Na2O2 + CO = Na2CO3

Гидроксиды элементов первой группы являются сильными основаниями. Они представляют собой бесцветные гигроскопичные вещества, легко расплывающиеся на воздухе и постепенно превращающиеся в карбонаты. Гидроксиды щелочных металлов прекрасно растворимы в воде.

Гидроксиды натрия, калия, рубидия и цезия плавятся без разложения, в то время как LiOH при прокаливании выделяет воду: 2LiOH = Li2O + Н2O

Взаимодействие гидроксидов щелочных металлов с кислотами и кислотными оксидами приводит к образованию солей.

Нитраты щелочных Ме при нагревании разлагаются:

4LiNO3=2Li2O+4NO2+O2

Но остальные: 2NaNO3=2NaNO2+O2

Na2CO3*10H2O – кристаллическая сода

NaHCO3 – питьевая сода (Получение- аммиачный способ, метод Сольве:

NaCl+NH3+CO2+H2O=NaHCO3+NH4Cl

2NaHCO3= Na2CO3+CO2+H2O (при нагревании)

Литий Li от остальных щелочных металлов отличает большее значение энергии ионизации и небольшой размер атома и иона. Литий по свойствам напоминает магний (диагональное сходство в периодической системе).

  1. В окислительно-восстановительном процессе всегда участвуют две (сопряженные)

пары, каждая из которых включает окислитель и восстановитель. Процессу образования ионов способствует увеличение энтропии (энтропия ионов в растворе гораздо больше, чем энтропия металла) и образование гидратов, а препятствуют процессы ионизации (энергия ионизации достаточно высока) и разрушения кристаллической решетки. В состоянии равновесия на пластинке локализуется положительный заряд, который компенсируется противоионами, находящимися в растворе. Так возникает двойной электрический слой, характеризующийся некоторым скачком потенциала который зависит от природы металла, температуры и концентрации ионов металла в растворе. Величину , нельзя ни измерить, ни рассчитать. Однако, если такой полуэлемент соединить проводником с другим полуэлементом (например, то между ними будет протекать электрический ток, обусловленный разностью потенциалов. Электродвижущая сила (Е) процесса, например реакции:

будет равна с высокой степенью приближения разности потенциалов полуэлементов:

Е = 1.

Вот эту величину — электродвижущую силу — измерить можно! Поэтому для характеристики полуэлементов (окислительно-восстановительных пар) используют величину ЭДС между данным полуэлементом и так называемым электродом сравнения. За электрод сравнения принят стандартный водородный электрод

+(р)+2e-=H20

Условно принято считать, что = 0 при давлении водорода, равном 1 атм,

и активности Н+, равной 1. ЭДС цепи, составленной из стандартного водородного электрода и изучаемого электрода, называют электродным потенциалом последнего. Если активности (концентрации) ионов равны единице, то этот потенциал называют

стандартным (Е°). Так, для окислительно-восстановительной пары Cu2+/Cu°, при

[Си2+] = 1 моль/л: Е = = Е° (Cu2+/Cu°).

Уравнение 1. для окислительно-восстановительного процесса в целом можно записать так:

или в более общем виде: E=Eок-Евос

где Еок — электродный потенциал пары, выступающей в качестве окислителя; Евос — электродный потенциал пары, выступающей как восстановитель.

Билет №9

Реакционная способность Р оказывается более высокой, чем азота. С металлами Р взаимодействуют с образованием фосфидов. Их получают нагреванием смеси пниктогена с металлом в инертной атмосфере или в запаянной ампуле.

Гидролиз фосфида: Mg3P2+6H2O=2PH3+3Mg(OH)2

Mg3P2+6HCl=2PH3+3MgCl2

Фосфор диспропорционирует

Р4 + 6Н2O = РН3 + ЗН3PO2

В кислой и нейтральной средах равновесие сильно смещено влево, и реакция практически не протекает. Равновесие смещается вправо под действием

щелочей: Р4 + ЗКОН + ЗH2O=PH3 + ЗКН2PO2

Фосфин образует с воздухом взрывчатые смеси, а при поджигании сгорает, превращаясь в метафосфорную кислоту: РН3 + 2O2=НРО3 + Н2O

Фосфин плохо растворим в воде. Реагирует только с очень сильными кислотами (HI, HClO4)

Алотропия фосфора.

Белый фосфор. Мягкое кристаллическое вещество с неприятным чесночным запахом, практически не растворим в воде, мало растворим в бензоле, хорошо растворим в сероуглероде. Он сильно ядовит, на воздухе горит. Имеет молекулярную решетку в узлах которой находятся тетраэдрические молекулы

P4. Высокая реакционная способность.

Красный фосфор.P Образуется при нагревании белого до 320 градусов без доступа воздуха.Он не растворим в сероуглероде, но растворяется в расплавленном висмуте и свинце.

Черный фосфор. При нагревании 200 оС и давлении 1200 атм. Красный переходит в черный фосфор- термодинамически более выгодную форму. Напоминает графит.

Оксиды.

Оксиды Э2O3 получают при взаимодействии простых веществ с кислородом. Оксид фосфора(III) представляет собой белый рыхлый кристаллический порошок, легко возгоняющийся. Оксид фосфора(III) называют фосфористым ангидридом, так как он взаимодействует с холодной водой с образованием фосфористой кислоты:

Р4O6+6Н2O = 4Н3PO3

Оксиды фосфора(III) проявляют кислотные свойства

Оксиды Э2O54О10). Оксид фосфора(V) (или фосфорный ангидрид) представляет

собой рыхлый белый порошок. Оксид фосфора(V) чрезвычайно жадно присоединяет воду. Реакция сопровождается сильным разогреванием и приводит к образованию

сложной смеси, состоящей из метафосфорных кислот разного состава, которые при кипячении гидролизуются до ортофосфорной кислоты Н3PO4.