Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Betekhtin

.pdf
Скачиваний:
26
Добавлен:
21.05.2015
Размер:
6.89 Mб
Скачать

Глава 4. Образование минералов в природе

141

(черных курильщиков), содержа щих заметные концентрации желе за, цинка, меди и серебра.

Гидротермальные процессы

вглубинных условиях развиваются

вкровле, на некотором удалении от непосредственного контакта с из верженными породами. Согласно гипотезе У. Эммонса (ок. 1930) кис лая магма является источником как воды гидротермальных растворов, так и металлов, переносимых в раст воренной форме из магматического очага в области рудоотложения. Остаточные надкритические раст

воры (флюиды), используя для сво

Рис. 55. Общая схема расположения

его продвижения системы трещин,

гидротермальных образований. Крестика

возникающих при внедрениях маг

ми показаны изверженные породы

мы в кровле магматических очагов

 

(рис. 55), постепенно охлаждаются и при температурах от 400 до 370 °С сжижаются, превращаясь в горячие водные растворы — гидротермы.

Наиболее благоприятные условия для проявления гидротермальных процессов создаются на малых и средних глубинах (до 3–5 км от поверх ности). Главная масса гидротермальных образований пространственно и генетически связана с интрузивами кислых пород (гранитов, гранодио ритов и др.). Сфера циркуляции раствора, начинаясь почти от верхних частей магматических очагов, достигает иногда дневной поверхности. В районах проявления недавнего вулканизма до сих пор действуют горя чие минерализованные источники, отлагающие кремнистые осадки с ве сомыми количествами сернистых соединений Hg, Sb, As, Pb, Cu и др. (Стимбот Спрингс в Неваде, Сольфор Бэнк в Калифорнии и др.).

По мере удаления от магматических очагов в сторону земной поверх ности гидротермальные растворы встречают среду, постепенно обогаща ющуюся кислородом; при этом внешнее давление соответственно пада ет; температуры снижаются предположительно от 400 до нескольких десятков градусов. Эти факторы, естественно, влияют на ход химичес ких реакций и на минеральный состав гидротермальных образований. По преобладанию тех или иных ассоциаций минералов эти образования совершенно условно делят на высоко , средне и низкотемпературные. Это, конечно, не означает, что среди высокотемпературных образований не могут встречаться ассоциации минералов, кристаллизующихся при низ ких температурах. Даже в пегматитах и контактово метаморфических об разованиях всегда устанавливаются более низкотемпературные минералы

Рис. 56. Блок диаграмма, отображающая морфологию «лестничных» золотонос ных кварцевых жил, заполняющих систему ступенчатых сбросов

142

Общая часть

гидротермального происхождения. Они свидетельствуют лишь о заклю чительных стадиях процесса отложения минералов, начавшегося при вы соких температурах.

Образование гидротермальных растворов продолжается, очевидно, весьма длительное время — в течение всего периода жизни магматичес кого очага. На основании анализа фактических данных о соотношениях различных месторождений, составляющих один рудный узел, С. С. Смир нов пришел к выводу о прерывистом движении рудоносных растворов в связи с неоднократным возобновлением процессов трещинообразования. Об этом говорят нередко наблюдающиеся признаки наложения более поздних стадий минерализации на более ранние.

Формы минеральных тел зависят от конфигурации выполняемых пустот и отчасти от состава горных пород, в которых происходит цир куляция растворов. В случае заполнения трещин образуются преры вающиеся жилы (рис. 56), корни которых иногда залегают в верх них частях магматических масси вов. При отложении минералов в мельчайших порах и пустотах обра зуются вкрапленники. Если раст воры на своем пути встречают хими чески легко реагирующие породы (например, известняки), то возни кают часто неправильной формы

метасоматические залежи. Если растворы внезапно попадают в большие раскрывшиеся полости, то вследствие резкого уменьше ния давления должно происхо дить массовое испарение раство рителя (воды), а в связи с этим, по крайней мере в первое время, — резкое пересыщение растворов и выпадение колломорфных масс,

сложенных сферолитовыми агрегатами. Широко распространены так же пустоты с друзами различных кристаллов.

Данные по растворимости рудных компонентов в солевых водных растворах показывают, что объемы гидротерм, которые способны генери ровать даже очень крупные интрузии (типа батолитов), недостаточны для выноса из магматического очага тех количеств металлов, которые запасе ны в гидротермальных залежах. Это привело к пересмотру взглядов на единство источников для части металлов и гидротермальных растворов. В настоящее время признается, что в образовании гидротермальных жил

Глава 4. Образование минералов в природе

143

также могут принимать участие воды глубокой циркуляции метеорного происхождения. Многократная циркуляция в неоднородном тепловом поле магматического очага значительных масс таких вод, обогащенных летучими компонентами, исходящими из интрузии, ведет к выщелачи ванию из огромных объемов надинтрузивных вмещающих пород некото рой доли кларковых содержаний таких металлов, как Au, Ag, Cu и Co, что является достаточным для последующего отложения значительных масс рудных минералов. Смешанная природа гидротермальных растворов под тверждается и данными об изотопном составе газово жидких включений в жильном кварце.

Минеральный состав гидротермальных месторождений крайне раз нообразен. Жилы в подавляющем большинстве случаев представлены массами кварца, которые заключают в себе скопления разнообразных минералов, чаще всего сернистых соединений металлов. Нужно сказать, что именно из гидротермальных месторождений добывается главная масса руд редких (W, Мо, Sn, Bi, Sb, As, Hg, отчасти Ni, Co), цветных (Cu, Pb, Zn), благородных (Аu и Ag), а также радиоактивных металлов (U, Ra, Th).

Экзогенные процессы минералообразования

Процессы образования минералов, совершающиеся на поверхности Земли за счет солнечной энергии, гораздо более доступны нашему наблю дению, чем эндогенные процессы.

Как мы знаем, на суше под влиянием воздействия атмосферных аген тов (кислорода воздуха, углекислоты, воды) и жизнедеятельности мик роорганизмов происходит мощный химический процесс, носящий общее название процесса выветривания. Он приводит к физическому и хими ческому разложению всего того, что было создано эндогенными процес сами, и одновременно к образованию новых продуктов, устойчивых в соз дающихся на поверхности Земли условиях.

Часть этих продуктов текучими поверхностными водами переносится

врастворенном или взвешенном состоянии и по пути следования отлага ется в местах замедленного движения вод в речных долинах или в озерных и морских бассейнах. Здесь также протекают своеобразные процессы ми нералообразования, приводящие к отложению осадков в виде пластов на дне водоемов. Этот процесс носит название осадочного процесса.

Процессы выветривания выражаются прежде всего в механическом разрушении пород и руд вследствие колебаний температуры, что ведет к дезинтеграции составляющих породы минералов, обладающих различ ными коэффициентами расширения, а также под действием замерзающей

втрещинках и порах воды и других факторов. Но гораздо важнее хими ческое разложение выветривающихся минералов под влиянием дожде вой и поверхностной воды, содержащей в растворенном состоянии кис лород, углекислоту и другие газы, вследствие чего она обладает довольно

144

Общая часть

Рис. 57. Схема поперечного разреза сульфидного месторождения, обнаженного на дневной поверхности.

1 — первичные медносульфидные руды; 2 — железная шляпа;

3 — зона вторичного обогащения медью (черное)

сильной окисляющей и растворяющей способностью. Эта вода, просачи ваясь и спускаясь до уровня грунтовых вод (рис. 57), постепенно теряет свой кислород в процессе происходящих реакций окисления, гидратации и карбонатизации.

Выщелачивание образующихся растворимых соединений приводит к образованию пор, каверн, иногда больших полостей (карстов). Стенки этих пустот часто бывают покрыты натечными образованиями или щет ками кристаллов каких либо экзогенных минералов или, наконец, могут быть выполнены землистым охристым материалом. В тех местах, где про исходит массовое выщелачивание более или менее легкорастворимых пород, наблюдается проседание с поверхности почвы, а иногда образова ние воронок провала и даже больших пещер (в гипсовых и известняко вых толщах).

Развивающийся на самой поверхности растительный покров, а вместе с ним и различные органические соединения, переходящие в растворы, значительно усиливают процессы химического разложения пород и руд.

Не разрушающиеся химически минералы (такие как кварц, золото, платина и др.), а также труднорастворимые новообразования накаплива ются в остаточных продуктах на поверхности Земли, наблюдающихся в виде глиноподобных масс различных светлых и темных оттенков, чаще бурых, окрашенных гидроокислами железа.

Накапливающиеся таким путем на поверхности или вблизи нее не растворимые продукты химического выветривания образуют так назы ваемые остаточные месторождения, представляющие собой скопления преимущественно гидроокислов и гидросиликатов. Таковы, например, многие месторождения глин, каолинов, бокситов, железных, никелевых и других руд, образующиеся при интенсивном разрушении соответству ющих по составу горных пород и занимающие иногда весьма значитель ные площади.

В тех случаях, когда химическому выветриванию подвергаются какие либо месторождения полезных ископаемых, возникающие остаточные об разования носят название шляп (железных, марганцевых, гипсовых и др.).

Глава 4. Образование минералов в природе

145

За счет выщелачивания ряда компонентов содержание остающихся полез ных ископаемых в этих шляпах обычно значительно выше, чем в неразло женных первичных рудах, т. е. залегающих ниже уровня грунтовых вод. Важно отметить, что некоторые выщелачиваемые металлы, особенно медь, а также серебро, цинк и другие, переносимые просачивающимися водами в виде растворов к низам зоны окисления, т. е. к уровню грунтовых вод, вступают в реакции с первичными рудами или с химически активными боковыми породами (известняками). В медносульфидных месторождени ях в этих случаях образуется зона вторичного сульфидного обогащения со значительно повышенным содержанием меди в рудах (см. рис. 57).

Впроцессах химического выветривания большую роль играют кли матические факторы (средняя годовая температура и количество осад ков). При малой влажности и высоких средних годовых температурах процессы окисления и концентрации химических соединений происхо дят энергичнее. Большое значение имеет также рельеф местности. В го ристых районах вследствие большой эрозионной деятельности не успе вает происходить накопление продуктов химического разрушения. Иную картину мы наблюдаем в районах с пониженным рельефом.

Формы месторождений, образующихся в процессе выветривания, обычно бывают представлены не совсем правильными гнездообразными или пластообразными залежами, более или менее параллельными днев ной поверхности. Вдоль крупных трещин, зон дробления и контактов раз нородных по физическим и химическим свойствам пород, т. е. там, где глубже проникают поверхностные агенты выветривания, могут образо ваться крутопадающие, выклинивающиеся с глубиной залежи рудных образований поверхностного происхождения.

Осадочные процессы происходят в водных средах: реках, озерах и мо рях. В морских бассейнах эти процессы во все геологические эпохи приво дили к образованию огромной мощности толщ осадочных горных пород. Среди этих образований различают механические и химические осадки.

Механические осадки образуются при размыве продуктов выветрива ния и переотложении водными потоками химически стойких минералов

иобломков пород в виде галечника, гравия, песков и песчаных глин в реч ных долинах и водных бассейнах. Если размыву подвергаются продукты выветривания месторождений или пород, содержащих химически стой кие ценные минералы, то они в результате повторных перемывов и пе рераспределения материала по удельному весу в речных долинах обра зуют россыпи (рис. 58), имеющие часто промышленное значение. Таковы, например, россыпные месторождения золота, платины, алмазов и др.

Впроцессе накопления механических осадков по существу не проис ходит образования каких либо новых минералов. Лишь в древних рос сыпях иногда устанавливаются некоторые позднейшие химические из менения в обломочном материале.

146

Общая часть

 

 

Химические осадки возникают

 

 

главным образом в озерах и мор

 

 

ских бассейнах. Выпадение осадков

 

 

может происходить различными

 

 

путями: либо путем кристаллиза

 

 

ции насыщенных солями раство

 

 

ров, либо путем осаждения сверты

 

 

вающихся в виде гелей коллоидных

 

 

образований, либо, наконец, путем

 

 

накопления продуктов жизнедея

Рис. 58. Обогащенные ильменитом,

тельности органического мира

рутилом и цирконом темные слойки

и самих органических остатков.

в песках раннемеловой прибрежно

1. Образование кристаллических

морской титано циркониевой россыпи.

осадков, называемых эвапоритами,

Нечерноземье, Россия

наблюдается во многих усыхающих

озерах, в которых в условиях сухого жаркого климата поверхностное испа рение превалирует над притоком пресной воды.

Кристаллизация солей наступает при некотором пересыщении вод ных растворов. Последовательность выделения минералов при прогрес сирующем испарении растворителя (Н2О) определяется двумя главны ми факторами равновесия системы: составом растворов, вернее, соотношением концентраций компонентов, входящих в систему, и тем пературой растворов, при которой происходит кристаллизация. Условия равновесия сернокислых и хлористых солей Са, Mg, К и Na, встреча ющихся в морской воде, детально изучены при различных концентраци ях и температурах Вант Гоффом, Н. С. Курнаковым и многими другими.

2. Образование коллоидальных осадков в озерных и морских бассейнах много сложнее, и не все стороны этого явления изучены в достаточной сте пени. Установлено, что некоторые образующиеся при выветривании соеди нения переносятся текучими водами не только в виде истинных раство ров, но также в виде коллоидных растворов — золей, устойчивых в пресных водах. Эти растворы, попадая с поверхностными водами в морские бассей ны, подвергаются коагуляции под влиянием электролитов, содержащихся в больших количествах в морских водах в виде ионов растворенных солей.

Так ведут себя коллоидальные растворы окислов железа, марганца, кремния и др.

Образующиеся при коагуляции коллоидных растворов микродисперс ные минеральные осадки вместе с приносимыми речными водами глини стыми частицами, мелким обломочным материалом и остатками морских организмов отлагаются на дне прибрежных зон бассейнов в виде просло ев или более мощных правильных по форме пластов. С течением време ни в этих осадках происходят некоторые преобразования (диагенезис) и превращение их в плотные массы.

Глава 4. Образование минералов в природе

147

На примере марганцевых осадочных месторождений выяснено зако номерное изменение парагенетических ассоциаций минералов в осадках в зависимости от физико химических условий формирования осадков на дне бассейнов. В прибрежных мелководных участках распространены наиболее богатые кислородом соединения четырехвалентного марганца, которые по мере удаления от береговой линии постепенно сменяются карбонатными соединениями двухвалентного марганца в сопровождении редких сульфидов железа. В мелководных участках осадконакопление, очевидно, происходило в условиях доступа кислорода, растворенного в морской воде, до некоторой глубины, тогда как в более глубоководных участках имели место недостаток кислорода, разложение органических остатков с образованием углекислоты и отчасти сероводорода, за счет которых, очевидно, и образовались карбонаты и сопровождающие их сер нистые соединения. В результате возникли так называемые фации раз личных по составу руд (окисных и карбонатных). По видимому, анало гичные же соотношения различных по составу осадков существуют и в месторождениях железа, для которых давно уже известны фации окис ных, силикатных и карбонатных руд.

3. К органогенным, или биогенным, осадкам, образующимся в результате сложных процессов жизнедеятельности организмов, относятся известняки, состоящие из скелетных образований морских животных, диатомиты, сло женные преимущественно кремнистыми скелетами диатомей, каустобиоли ты (от греч. каустос — горючий), возникшие главным образом за счет расти тельных и отчасти животных организмов (например, ископаемые угли, горючие сланцы, нефти, горючие газы, твердые битумы и пр.).

Органогенные осадки могут возникать путем накопления скелетов от мирающих животных (ракушняки) или тканей высших или низших расте ний (торф, сапропель). Они могут также являться результатом самой жиз недеятельности организмов, например анаэробных бактерий, разлагающих органические остатки или сульфаты, в процессе чего в конце концов обра зуются скопления серы. Наконец, за счет продуктов деятельности бакте рий могут возникать желвакоподобные образования, как это в лаборатор ных условиях было доказано для ферробактерий.

При последующем перерождении одни из этих осадков превращают ся в неорганические продукты (например, известняки, фосфориты), дру гие же остаются органическими соединениями (каменные угли и др.).

Региональный метаморфизм и связанные с ним процессы минералообразования

Наиболее сильные изменения как эндогенных, так и экзогенных обра зований наступают при так называемом региональном метаморфизме, когда вследствие тектонических перемещений целые области верхних участ ков земной коры могут оказаться в глубинных условиях, т. е. в условиях

148 Общая часть

сильно повышенных температур и давлений или в условиях мощного про явления горообразующих процессов.

В этих условиях весьма существенно меняется минеральный состав горных пород и руд, а также их свойства и внешний облик. Химический состав при метаморфизме остается неизменным, в отличие от метасо матоза, исключение составляют лишь два компонента — вода и угле кислота. Образовавшиеся в экзогенных условиях богатые водой соеди нения превращаются в безводные или бедные водой (например, опал переходит в кварц, лимонит — в гематит или магнетит и т. д.). Одновре менно происходит перекристаллизация вещества (например, органоген ный известняк превращается в мрамор с уничтожением прежних струк турных особенностей). Во многих породах, в том числе в изверженных, происходит полная перегруппировка компонентов с образованием но вых минералов. Некоторые минералы, такие как гипс, самородная сера, каменная соль и др., совершенно не встречаются в метаморфических толщах. Химические реакции под влиянием высокого давления и тем пературы стремятся идти в сторону образования минералов с уменьшен ным объемом и повышенным удельным весом. Парагенезис минералов зависит не только от состава метаморфизующихся пород, но и в значи тельной мере также от глубины, на которой происходит метаморфизм, т. е. от термодинамических условий.

Сами породы под влиянием сильных динамических воздействий пре вращаются в сланцы, способные раскалываться на пластинки и плитки (гли нистые сланцы, аспидные сланцы, слюдяные сланцы, гнейсы и др.). Если метаморфизму подвергаются тонкослоистые оса

 

дочные породы, причем направление давления

 

совпадает с направлением слоистости или близ

 

ко к нему, то происходит сминание прослоек с об

 

разованием многочисленных мелких складок, по

 

добно тому, как это изображено на рис. 59.

 

В перегруппировках минерального вещества

 

бесспорную роль играют такие компоненты, как

 

Н2О, СО2 и другие минерализаторы, с помощью

 

которых совершаются не только перекристалли

 

зация масс, но и явления метасоматоза и даже

 

переотложение минерального вещества. Источ

 

ником Н2О и СО2 в данном случае являются либо

 

магматические породы, либо те же породы, кото

Рис. 59. Железистый

рые подвергаются метаморфизму. Из некоторых

кварцит плойчатой

пород, особенно из осадочных, в процессе пере

текстуры (слойки, сложен

кристаллизации их массы в агрегаты безводных

ные кварцем, гематитом и

минералов должны освобождаться весьма

магнетитом, смяты в

мелкие складки)

существенные количества воды и отчасти угле

Глава 4. Образование минералов в природе

149

кислоты. В условиях повышения температур и давлений эта метаморфи ческая вода должна приобретать все свойства типичных гидротерм, а за тем — и флюидов, генетически связанных с интрузивной магматической деятельностью, т. е. повышенную способность к растворению, переносу и отложению минералов вдоль трещин или путем метасоматоза.

Среди месторождений полезных ископаемых, встречающихся в мета морфизованных толщах, выделяются следующие несколько различные по генетическим признакам типы: а) метаморфизованные месторожде ния, т. е. месторождения, существовавшие до момента метаморфизма (на пример, осадочные месторождения железа и марганца); б) метаморфи' ческие месторождения, возникшие лишь в процессе метаморфизма.

Примером генезиса месторождений последнего типа может служить образование в метаморфических толщах графита за счет органических остатков.

Известны случаи происхождения скрытокристаллического графита с отпечатками растений за счет пластов каменного угля (в метаморфи ческих толщах восточного склона Урала). В данном случае графит как но вообразование уже не представляет собой горючее ископаемое вследствие коренного изменения первоначальных свойств и потери летучих веществ.

Кэтому же типу месторождений относятся чрезвычайно интересные

вминералогическом отношении так называемые «жилы альпийского типа» (название дано по месту их первоначального изучения). Эти жилы давно обратили на себя внимание минералогов тем, что в них встречаются заме чательные по красоте друзы кристаллов различных минералов. Они при урочены к полым трещинам разрыва, возникшим в метаморфических тол щах обычно вкрест сланцеватости пород (рис. 60). Характернейшей особенностью состава этих жил является то, что в них выкристаллизовы ваются те же самые минералы, которые возникают в процессе метаморфизма

Рис. 60. Схема строения «жил альпийского типа»

150

Общая часть

всамих окружающих породах, и примерно в тех же количественных соот ношениях. Лишь более редкие в породах — акцессорные минералы, содер жащие Ti, P, Cl, B и др., в трещинах встречаются в несколько больших ко личествах, чем в боковых породах. Соответствие минерального состава жил альпийского типа составу вмещающих пород позволяет считать, что минеральные компоненты были перенесены в полости непосредственно из метаморфизуемых толщ при участии флюидов или гидротерм, не связан ных, по видимому, с какими либо магматическими очагами. Пестрота ми нерального состава альпийских жил приводит к тому, что их выполнение трудно отнести к определенному узкому интервалу температур. Механизм перераспределения компонентов из боковых пород в открытые полости тре щин, как предполагается, связан с более высокой растворимостью в поро вых растворах породообразующих минералов, а присутствующих в виде мелких зерен акцессорных — в особенности, по сравнению с их раствори мостью в растворах полостей.

Тонкие трещины в метаморфических породах нацело выполняются минеральным веществом. Таковы, например, прожилки белого кальцита

всерых известняках, молочно белого кварца в красных яшмах и т. д. При этом размеры кристаллических зерен этих жилок всегда больше, чем

вокружающей породе.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]