Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект лекций СВСУ.pdf
Скачиваний:
156
Добавлен:
11.05.2015
Размер:
2.7 Mб
Скачать

6.1.3 ЦАП с сигма–дельта модуляцией

Это имульсный класс интегральных преобразователей (рисунок 6.8). Слово “сигма” – сумма, “дельта” – схема работает на импульсном принципе.

а)

б)

Рисунок 6.8, а – Схема сигма-дельта модулятора; б – графики процессов преобразования (ЦАП)

215

На вход подается не двоичный сигнал h(t) (график 1 рисунка 6.8,б). Элементом 11 с инверсией производится преобразование, как на втором графике на рисунке 6.8, б. Тактовый сигнал с одной стороны подается на нижний вход &1, верхний &2; с другой стороны проинвертированный инвертором 12 на ключ S3 (графики 3, 4). Выходы логических элементов &1, &2 выдают импульсы, представленные пятым и шестым графиками на рисунке 6.8, б, которые управляют ключами S1 и S2. На выходе ключей S1 и S2 включен конденсатор С1, емкость которого в тысячи раз меньше емкости С2 интегратора на ОУ.

Через ключи S1 и S2 происходит заряд С1 малой величины от источников +В или –В, соответствующей полярности. Замыкается ключ S3, передает заряд конденсатора С1 в С2. Заряд на С1 представлен седьмым графиком рисунка 6.8, б, а заряд С2 соответственно – восьмым графиком. Из восьмого графика следует, что импульсы сигнала первого графика преобразуются в аналоговый сигнал восьмого графика, т.е. осуществляется операция ЦАП. Достоинства схемы – несложность, высокая точность преобразования, стабильность.

6.1.4 ЦАП с прямым преобразованием

Отличаются несложностью схем, однако имеют невысокую точность преобразования. Один из вариантов прямого преобразования на рисунке 6.9.

Рисунок 6.9 – ЦАП с прямым преобразованием

В схему вводится реверсивный счетчик, в котором периодически (циклически) параллельным образом записывается цифровой код. На протяжении действия цикла на счетчик, работающий в режиме вычитания (реверсивного считывания) поступают тактовые импульсы fT, следовательно, на выходе счетчика выводятся импульсы, количество которых определяется цифровым кодом, записанным параллельным образом. Интегратор считает эти импульсы, на его выходе выделяется аналоговое напряжение, пропорциональное записанному в счетчике коду. Один из серьезных недостатков этого принципа – цикличность. Т.е. преобразователь не учитывает того, что происходит с сигналом на протяжении действия цикла. Другие недостатки – невысокое быстродействие, большая погрешность.

216

6.2Аналого-цифровые преобразователи

6.2.1Следящие АЦП

Пример следящих АЦП приведен на рисунке 6.10.

а)

б)

Рисунок 6.10,а - Следящие АЦП; б – следящее аналогово-цифровое преобразование

Преобразуемый аналоговый сигнал подается на минус–вход ОУ, который

всущности работает в качестве компаратора. Выход ОУ в плюс или минус области управляет реверсивным счетчиком: счет “+” или счет “–”. Код этого счетчика воздействует на вход ЦАП, последний выдает в сущности тот же аналоговый сигнал, но ступенчатый, который затем поступает на плюс–вход ОУ. Если больше входной сигнал на минус–входе, то счетчик считает в прямом направлении; если больше выход ЦАП , то счетчик считает в обратном направлении. Выход – это код счетчика. На графике рисунка 6.10, б сначала квантованная прямая до пересечения с аналоговым сигналом, а затем слежение за уровнем аналогового сигнала.

Достоинства: непрерывное слежение и выдача выхода; Недостаток: невысокая точность (0,5 ÷ 1%), присущая следящим

системам, поэтому в интегральных микросхемах этот способ не применяется.

6.2.2Развертывающие АЦП

Функциональная схема развертывающих АЦП подобна рисунку 6.10. Но

вданном случае производится квантование до пересечения с преобразуемым сигналом (см. рисунок 6.11), сброс в нуль, затем вновь квантование, сброс и т. д.

217

Рисунок 6.11

Достоинство: высокая точность (погрешность в 1квант). Недостатки:

отсчет производится в точках 1, 2, а что в промежутке – неизвестно;

большое время преобразования, так как необходимо развертывать квантами;

циклы преобразования переменные во времени;

можно сделать постоянные циклы, но это тоже не экономично;

точки 1, 2 соответствуют коротким интервалам времени, в течение которого нужно произвести отсчет. Для того, чтобы интервал времени между точками 1 и 2 использовался более эффективно вводят УВХ (устройство выборки хранения) наподобие эмиттерных повторителей, хранящих уровни точек 1,2 в течение интервалов времени 1 - 2.

В связи с этими недостатками в интегральных микросхемах не применяются.

6.2.3АЦП с регистром последовательного приближения

В интегральной схемотехнике широко применяется метод

последовательных приближений (поразрядного уравновешивания) с использованием регистра РПП (регистр последовательных приближений).

Сущность данного метода заключается в том, что заполняется регистр не от нуля. Первая единица вносится в старший разряд, затем – в ближайший к старшему и т. д. Следовательно, аналоговый выход соответствует не одному кванту, а старшему разряду и т. д. Т. е. регистр заполняется за время, соответствующее числу разрядов двоичного кода.

Процессы преобразования в определенной мере подобны скачкообразным на рисунке 6.11, но приближение к аналоговому сигналу происходят не “лесенкой”, т.е. начиная с младшего разряда, а скачками, вначале большими ступенями, так как заполнение регистра последовательного приближения начинается со старшего разряда кода, затем ступени уменьшаются в соответствии с “весом” разряда.

Функциональная схема, реализующая этот метод, изображена на рисунке

6.12.

218