Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л-1,2 Комп. числа.doc
Скачиваний:
81
Добавлен:
10.05.2015
Размер:
743.42 Кб
Скачать

1.1.4 Геометрическое изображение комплексных чисел. Комплексная плоскость.

Если для изображения действительных чисел используются точки числовой прямой, то изображениями комплексных чисел служат точки координатной плоскости.

Введем на плоскости прямоугольную декартову систему координат с осями х иу. Тогда каждому комплексному числубудет отвечать точка с координатами. Эту точку чаще всего обозначают той же буквой, что и само число.

При таком способе изображения комплексных чисел любому действительному числу, т.е. числу вида , отвечает точка, лежащая на осих. Таким образом, приходим к уже известному способу изображения действительных чисел точками числовой прямойх. В связи с этим осьхназываютдействительной осью. Комплексным же числам видаотвечают точкиосиу; по этой причине осьуназываютмнимой осью. На рис. 1 указаны изображения некоторых комплексных чисел.

Наряду с изображением комплексных чисел точками плоскости применяется и другой способ изображения – с помощью векторов плоскости. Числу сопоставляется радиус-вектор точки(Рис.2). «Точечный» и «векторный» способы изображения комплексных чисел применяются одинаково часто.

Изображение комплексных чисел с помощью векторов имеет то преимущество, что оно хорошо «увязано» с операцией сложения комплексных чисел. Пусть числам ,соответствуют векторы,. Тогда числусоответствует вектор с координатами, т.е. вектор. Таким образом,сложение комплексных чисел геометрически сводится к сложению соответствующих векторов. Напомним, что сложение векторов осуществляется по правилу параллелограмма (рис. 3).

у

х

Рис. 3 Рис. 4

Поскольку сложение комплексных чисел сводится к сложению векторов, это же должно быть верно и по отношению к вычитанию. Если вектор изображает комплексное число, а вектор- число, то векторявляется изображением числа. Разумеется, чтобы получить точку, изображающую число, этот вектор нужно отложить от начала координат (точка С на рис. 4).

1.2 Тригонометрическая форма комплексного числа и

ее применение.

1.2.1. Модуль и аргумент комплексного числа.

Комплексное число в прямоугольной декартовой системе координатхОуизображается либо точкойАс абсциссойаи ординатойb, либо радиус-вектором этой точки. Длина вектораназываетсямодулем комплексного числаи обозначается символом:

(1)

Угол , образованный векторомс положительным направлением осиОх, называетсяаргументомчислаи обозначается. Связь между аргументом комплексного числа и его действительной и мнимой частями выражается формулами

(2)

или . (3)

Формулы (2) и (3) позволяют для заданного комплексного числа находить модуль и аргумент. Обратно, если заданы модульи аргументкомплексного числа, то числонаходится с помощью равенств:

. (4)

Аргумент комплексного числа определяется неоднозначно: если - аргумент числа, то, где, - также аргумент этого числа. Для однозначности определения аргумента его выбирают в промежуткеи называютглавным значением аргумента.Главное значение аргумента обозначают .

Так как , то аргументможно представить в виде

.

Пример 1.Найти модуль и аргумент комплексного числа.

Используя формулу (1), находим модуль данного числа:

.

Далее, согласно формуле (2), получим

Так как точка, изображающая данное число, лежит во IIчетверти, тои, следовательно,.

Для главного значения аргумента справедливы соотношения:

В самом деле, так как главное значение лежит междуи, то:

  1. если точкалежит вIилиIVчетверти, то и;

  1. если точкалежит вIIчетверти, то и;

3) если точкалежит вIIIчетверти, то и;

Пример 2.Найти модуль и аргумент комплексного числа.

Решение.Вычислим модуль:.

Так как ,, то числолежит вIIIчетверти, поэтому.

Следовательно, , где.