Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Клетка.doc
Скачиваний:
63
Добавлен:
18.04.2015
Размер:
275.97 Кб
Скачать
  1. Комплекс Гольджи.

Комплекс Гольджи является универсальным мембранным органоидом эукариотических клеток. Структурная часть комплекса Гольджи представлена системой мембранных цистерн, образуя стопку цистерн. Эту стопку называют диктиосомой. От них отходят мембранные трубочки и мембранные пузырьки.  Комплекс Гольджи может быть представлен в клетке одной диктиосомой в специальном участке цитоплазмы. В одной клетке может находиться несколько связанных между собой изолированных диктиосом.  В диктиосоме комплекса Гольджи различают 2 полюса: проксимальный (регенераторный) и дистальный (функциональный). Проксимальный полюс обращен к цитоплазме, или ядру, а дистальный – к плазмолемме. Строение мембран комплекса Гольджи соответствует жидкостно-мозаичной структуре. Мембраны различных полюсов разделяются по количеству гликолипидов и гликопротеинов. На проксимальном полюсе происходит образование новых цистерн диктиосомы. От участков гладкой ЭПС отрываются мелкие мембранные пузырьки и передвигаются в зону проксимального полюса. Здесь они сливаются и образуют более крупную цистерну. В результате этого процесса в цистерны комплекса Гольджи могут транспортироваться вещества, которые синтезируются в ЭПС. От боковых поверхностей дистального полюса отрываются пузырьки, которые участвуют в энджоцитозе.  Комплекс Гольджи выполняет 3 общих клеточных функции:

  1. Накопительную

  2. Секреторную

  3. Агрегационную

В цистернах комплекса Гольджи протекают определенные биохимические процессы. В результате осуществляется химическая модификация компонентов мембраны цистерн комплекса Гольджи и молекул внутри этих цистерн. В мембранах цистерн проксимального полюса имеются ферменты, которые осуществляют синтез углеводов (полисахаридов) и их присоединение к липидам и белкам, т.е. происходит гликозилирование. Наличие этого, или другого углеводного компонента у гликозилированных белков определяет их судьбу. В зависимости от этого белки попадают в разные районы клетки и секретируются. Гликозилирование является одним из этапов созревания секрета. Кроме того, белки в цистернах комплекса Гольджи могут фосфорилироваться и ацетилироваться. В комплексе Гольджи могут синтезироваться свободные полисахариды. Часть их подвергается сульфатированию с образованием мукополисахаридов (гликозаминогликанов). Еще одним вариантом созревания секрета является конденсация белков. Этот процесс заключается в удалении молекул воды из секреторных гранул, что приводит к уплотнению секрета. Так же универсальность комплекса Гольджи в эукариотичсеких клетках является его участие в формировании лизосом. 14. Лизосомы. Лизосомы являются мембранными органоидами клетки. Внутри лизосом находится лизосомальный матрикс из мукополисахаридов и белки ферменты. Мембрана лизосом производной мембраны ЭПС, но имеет свои особенности. Это касается структуры билипидного слоя. В мембране лизосом он не сплошной (не непрерывный), а включает липидные мицеллы. Эти мицеллы составляют до 25% поверхности лизосомальной мембраны. Такое строение называется пластинчато-мицеллярное. В мембране лизосом локализуются разнообразные белки. К ним относятся ферменты: гидролазы, фосфолипазы; и низкомолекулярные белки. Гидролазы являются специфическими для лизосом ферментами. Они катализируют реакции гидролиза (расщепления) высокомолекулярных веществ.  Функции лизосом:

  1. Переваривание частиц при фагоцитозе и пиноцитозе. 

  2. Защитная при фагоцитозе 

  3. Аутофагия 

  4. Аутолиз в онтогенезе.

Основной функцией лизосом является участие в гетерофаготических циклах (гетерофагия) и в аутофаготических циклах (аутофагия). При гетерофагии расщепляются чужеродные для клетки вещества. Аутофагия связана с расщеплением собственных веществ клетки. Обычный вариант гетерофагии начинается с эндоцитоза и образования эндоцитарного пузырька. В этом случае пузырек называют гетерофагосомой. На шероховатой ЭПС синтезируются белки лизосом, включая гидролазы. Они первично гликозилируются в составе мембранного пузырька, направляются в комплекс Гольджи. Здесь происходит дополнительное гликозилирование и формирование лизосомального матрикса. В результате образуются первичные лизосомы с неактивными гидролазами. Инактивация гидролаз обусловлена их гликозилированием и действием специфических ингибиторов гидролаз. Эти ингибиторы являются низкомолекулярными белками мембраны лизосом. Первичная лизосома сближается в гетерофагосомой с помощью микротрубочек. После контакта этих мембранных пузырьков они сближаются и образуют вторичную лизосому или гетерофаголизосому. Образование гетерофагосомы активирует протонный насос, который транспортирует в нее протоны Н+. Среда вторичной лизосомы становится более кислой, что индуцирует активность гидролаз. В результате вещество, попавшее во вторичную лизосому подвергается расщеплению. Низкомолекулярные продукты гидролиза проходят через мембрану вторичной лизосомы в гиалоплазму. После завершения гидролиза вторичная лизосома может сливаться с новой гетерофагосомой и начинать новый гетерофаготический цикл. Через несколько таких циклов гидролазы теряют свою активность и превращаются в телолизосому, или остаточное тельце. В телолизоме находятся остатки нерасщепленных веществ. Она может сохраняться в гиалоплазме или включаться в процесс экзоцитоза. В другом варианте гетерофагии отсутствует этап эндоцитоза чужеродных веществ. В этом случае первичная лизосома сразу включается в экзоцитоз. В результате гидролазы матрикса оказываются в гликокаликсе клетки и способны расщеплять внеклеточные чужеродные вещества.  Простая аутофагия (макроаутофагия) не имеет принципиальных отличий от гетерофагии. В этом случае расщепляемое вещество окружается участком не плазмолеммы, а эндомембраны (ЭПС, комплекс Гольджи). В результате образуется аутофагосома. Она сливается с первичной лизосомой и формируется вторичная лизосома. Ее называют аутофаголизосомой. Дальнейшая судьба аутофаголизосомы аналогична судьбе вторичной лизосомы в гетерофаготическом цикле. Путем аутофагии разрушаются мембранные органоиды клетки (митохондрии). При этом мембраны первичной лизосомы сливаются с наружной мембраной митохондрий. Таким же образом может разрушаться содержимое различных мембранных пузырьков цитоплазмы. Еще один вариант аутофагии получил название лизофагии. В этом случае не образуется аутофагосома. Частным случаем лизофагии является микроаутофагия, когда разрушаемое вещество проходит через мембрану лизосомыв лизосомальный матрикс. Есть вариант, когда аутофагия реализуется путем расщепления веществ в самой гиалоплазме. В этом случае фосфорилирование белков мембраны первичной лизосомы индуцирует выход нидролаз из лизосомы в гиалоплазму. Здесь и осуществляется внелизосомный гидролиз веществ. На основе аутофагии и гетерофагии осуществляются многие клеточные функции. Аутофагия характерна для всех эукариотичсеких клеток. При разрушении веществ в процессе аутофагии образуются низкомолекулярные метаболиты. Они используются в пластическом и энергетическом обмене и выполняют трофическую функцию. На основе аутофагии и гетерофагии лизосомы принимают участие в процессенге некоторых белков. Белок тиреоглолбулин связывает йод и попадает путем эндоцитоза в эпителиальные клетки щитовидной железы. Здесь лизосоме тиреоглобулин расщепляется до низкомолекулярных гормонов: тироксин и трийодтиронин. При отсутствии активности лизосомальных гидролаз нарушается нормальный катаболизм (расщепление) веществ. По нарушению катаболизма болезни накопления классифицируют на: гликогенозы, мукополисахаридозы, муколипидозы, сфинголипидозы. Это наследственные болезни.  15. Пероксисомы. Пероксисомы (микротельца) по строению сходны с лизосомами. Они состоят из матирикса и нуклеотида. Матрикс пероксисом содержит до 15 ферментов. Наиболее важные из них пероксидаза и каталаза, оксидаза D-аминокислот и уратроксидаза. Нуклеотид пероксисомы соответствует области конденсации ферментов. Пероксисомы образуются в ЭПС, отпочковываясь от агранулярной ЭПС, их ферменты частично синтезируются в гранулярной ЭПС, частично в гиалоплазме. Мембрана пероксисом непроницаема для ионов и низкомолекулярных субстратов. Пероксисомы – главный центр образования кислорода клетки. В результате окисления аминокислот, углеводов образуется Н2О2, которая благодаря каталазе распадается на воду и О2. Крупные пероксисомы печени и почек играют важную роль в обезвреживании ряда веществ. Помимо этого они участвуют в катаболизме (в обмене аминокислот, оксалата и полиаминов). В настоящее время открыт класс наследственных болезней – пероксисомные болезни, развитие которых обусловлекнно дефектом пероксисом. При этих болезнях поражаются органы, развиваются нарушения нервной системы, вызывающих смерть больных в детском возрасте.