Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Клетка.doc
Скачиваний:
63
Добавлен:
18.04.2015
Размер:
275.97 Кб
Скачать
  1. Содержание химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки.

Химическая организация клетки: 80% - вода. 1-2% - липиды 1-2% - неорганические вещества. 1-2% - нуклеиновые кислоты. 1-1,5% - низкомолекулярные вещества. 1-2% - углеводы. 10-12% - белки. Химический состав неорганических веществ клетки:

Кислород – 65-75 %

Магний – 0,02-0,03%

Цинк – 0,0003%

Углерод – 15-18%

Натрий – 0,02-0,03%

Медь – 0,0002%

Водород – 8-10%

Кальций – 0,04-2,00%

Йод – 0,0001%

Азот – 1,5-3.0%

Железо – 0,01-0,015%

Фтор – 0,0001%

 

Сера – 0,15-0,20%

 

 

Калий – 0,15-0,40%

 

 

Фосфор – 0,20-1,00% 

 

 

Хлор – 0,05-0,10%

 

 Вода – обязательный компонент клетки. В ней растворены многие вещества, в т.ч. органические (гидрофильные – углеводы и гидрофобные – белки). Вода необходима для работы ферментов. Функции воды:

  1. Служит для протекания реакций. 

  2. Участвует в химических реакциях 

  3. Регулирует обмен веществ 

  4. Участвует в терморегуляции 

  5. Смачивание поступающей пищи.

Биологическая роль воды определяется особенностью ее молекулярной структуры.  Осмос – проникновение молекул растворителя через полупроницаемую мембрану из раствора с меньшей концентрацией в раствор с большей концентрацией. Давление воды, с которой она давит на мембрану – осмотическое давление. Растворы, имеющие одинаковое осмотическое давление называются изотоническими. Растворы:

  1. Гипертонические – вызывают сморщивание клеток 

  2. Гипотонические – вызывают разрыв клеток 

Тургор – давление, с которым вода давит изнутри на оболочку. Соли: К неорганическим веществам кроме воды относятся и соли. Они находятся в диссоциироранном состоянии: Na, K+, Ca2+, Mg2+ - катионы и HPO42-, H2PO4-, HCO3- - анионы. От концентрации солей зависит осмотическое давление и ее буферные свойства, т.е. поддерживать реакцию на слабощелочном или нейтральном уровне РН. РН – отрицательный логарифм концентрации водородных ионов. РН = 7 – среда нейтральная. РН = (7;14) – щелочная среда. РН = (1;7) – кислая среда. В некоторых клетках находятся нерастворимые минеральные соли (костные клетки) за счет присутствия Ca3PO4, CaCO3. 

  1. Органические вещества клетки: липиды, атф, биополимеры (углеводы, белки, нуклеиновые кислоты) и их роль в клетке.

Липиды - сложные эфиры высокомолекулярных жирных кислот и трехатомного спирта глицерина. Липиды содержатся во всех клетках животных и растений. Они входят в состав многих клеточных структур. Витамины А, D, E, К – являются жирорастворимыми. Функции жиров:

  1. Энергетическая – 1г. жира – 9,2 ккал. 

  2. Строительная – входит в состав всех мембран. 

  3. Некоторые липиды являются предшественниками гормонов – регулируют обмен веществ. 

  4. Защитная. 

  5. Терморегуляторная.

Аденозинтрифосфорная кислота (АТФ) АТФ обеспечивает клетку энергией. Любое проявление жизнедеятельности нуждается в затрате энергии. Энергетический обмен связан с пластическим. Все реакции пластического обмена нуждаются в затрате энергии. Для осуществления реакций энергетического обмена необходим постоянный синтез ферментов, т.к. продолжительность жизни ферментов невелика. Через пластический и энергетический обмен осуществляется связь клетки с внешней средой. Живая клетка представляет собой открытую систему, т.к. между клеткой и внешней средой постоянно происходит обмен веществ и энергией. Клетка – высокоорганизованная структура, в которой экономно расходуется материалы и энергия и процессы идут с высоким КПД. КПД митохондрий - 45-60%, хлоропластов – 25%. Использование энергии АТФ:

  1. Ассимиляция. 

  2. Транспорт веществ. 

  3. Деление клетки и ее органоидов. 

  4. На процессы жизнедеятельности.

Углеводы - органические вещества с общей формулой (CH2O)n. В живой клетке - 1-2%, в печени и мышцах – до 5%. В растительной клетке до 90% (картофель, семена). Углеводы:

  1. Простые – моносахариды – определяются по числу атомов углерода: триозы, тетрозы, пентозы, гексозы. Наиболее важны: пентозы C5H10O5 и гексозы C6H12O6. Из петоз выделяют рибозы и дезоксирибозы (рибозы входят в состав РНК, АТФ; дезоксирибозы - ДНК). Из гексоз выделяют глюкозу, фруктозу, галактозу. 

  2. Сложные – дисахариды, полисахариды.

Дисахариды – сахароза (глюкоза + фруктоза), лактоза (глюкоза + галактоза). Подисахариды – состоят из множества молекул моносахаридов: целлюлоза (полимер из 150-200 молекул глюкозы), крахмал. Функции углеводов:

  1. Энергетическая – окисление в митохондриях мышц. 

  2. Строительная – целлюлоза в клеточной стенки растений, хитин в скелете членистоногих.

Белки - входят в состав всех организмов. По химической природе – белки – полимеры, мономеры которых – аминокислоты. Аминокислота – органическая кислота. Состав аминокислоты:

  1. Аминогруппа – NH

  2. Карбоксильная группа – СООН

Аминогруппа в цепи белка соединена пептидной связью (CO-NH), образована карбоксильной группой и группой другой аминокислоты. Живыми организмами используется только 20 аминокислот, хотя существует их значительно больше: глицин, аланин, валин, лейцин, изолейцин, серин, треонин, аспарагиновая кислота, глутаминовая кислота, аспарагин, глутамин, лизин, аргинин, цистеин, метионин, фенилаланин, тирозин, триптофан, гистидин, пролин. Различают 4структуры белка: Первичная структура - аминокислотная цепь, связанная между собой пептидными связями. Вторичная структура - белковая нить закручена в спираль и соединение участков цепи происходит за счет водородных связей (Н-Н). Третичная структура – сворачивание вторичной структуры в клубок. Эта структура специфическая для каждой молекулы белка. Сворачивание происходит за счет дисульфидных мостиков (-S-S-), и сульфгидрильных мостиков (-S-H-). Четвертичная структура – имеется не у всех белков – объединение нескольких структур (субъединиц). Например: гемоглобин. По своему составу белки бывают:

  1. Простые – состоят только из аминокислот 

  2. Сложные – содержат нуклеиновые кислоты (нуклеопротеиды), жиры (липопротеиды), углеводы (гликопротеиды), металлы (металлопротеиды).

Функции белков:

  1. Строительная (мембраны, ядро). 

  2. Транспортная (перенос О2 гемоглобином). 

  3. Ферментативная (ускорение биохимических реакций). 

  4. Двигательная (сократительная). 

  5. Защитная (гаммаглобулины). 

  6. Энергетическая (1г. – 4,2 ккал). 

  7. Сигнальная.

Нарушение природной структуры белка называется денатурацией. Денатурация бывает обратимой и необратимой. Ренатурация –восстановление структуры белка после прекращения воздействия. 4. Ферменты, их роль в процессе жизнедеятельности.  По химической природе ферменты – белки. Ферменты – биологические катализаторы. Они способствуют ускорению реакций, входят в состав тканей.

Ферменты специфически катализируют химические реакции, т.е. 1 фермент катализирует 1 тип реакций. И превращает лишь в соответствующий субстрат. Ферменты в основном катализируют превращение веществ, размеры которых по сравнению с размерами фермента очень малы. Ферменты бывают:

  1. Простые 

  2. Сложные

 Простые – состоят только из белка, молекулы которых имеют активный центр – определенную, специфическую для фермента группу аминокислот в молекуле. В основном это гидролитические ферменты: амилаза, пепсин, трипсин и др. Сложные – состоят из белковой и небелковой части. Белок называется апоферментом (носителем фермента). Небелковая часть – коферментом или простатической группой: пример – органические вещества: витамины, НАД, НАДФ; неорганические вещества: атомы металлов – железо, цинк, магний. Апофетмент отвечает за специфичность молекулы фермента с молекулой субстрата. Кофермент отвечает за тип катализируемой реакции. Механизм действия ферментов: Снижение энергии активации, т.е. снижение уровня энергии, необходимой для придания реакционной способности молекулы субстрата т.к. молекула фермента имеет большую величину, то возникает сильное электрическое поле, в которой молекула субстрата становится асимметричнойв результате чего химические связи в ней ослабевают. Фермент образует с субстратом фермент-субстратный комплекс. Присоединение субстрата происходит с помощью активного центра. По завершению реакции комплекс распадается на фермент и продукт реакции. Ферменты образуют в клетке ферментные системы (мультиферментативные комплексы). При этом продукт предыдущей реакции является субстратом для последующей. Активность ферментов в клетках контролируется на генетическом уровне по принципу обратной связи. Свойства ферментов:

  1. Специфичны 

  2. В отличие от химических катализаторов – ускоряют реакции в обычных условиях. 

  3. Активность ферментов меняется в зависимости от Т0, РН, концентрации субстрата. 

  4. Активируют в малых количествах, т.е. не разрушаются в процессе реакций 

  5. Ферменты – белки и имеют свойства белков.

Классификация ферментов: В 1961 году Международный биохимический съезд утвердил классификацию ферментов, в основу которого положен тип реакции, катализируемый данным ферментом. По этому принципу все ферменты разделены на 6 классов:

  1. Оксидоредуктазы – ферменты, катализирующие окислительно-восстановительные реакции. 

  2. Трансферазы – катализирующие перенос атомов или радикалов: пример – каталаза – 2Н2О= 2Н2О + О2 

  3. Гидролазы - ферменты разрывающие внутримолекулярные связи путем присоединения молекул воды: например – фосфатаза. 

  4. Лиазы – Ферменты, отщепляющие от субстрата ту или иную группу негидролитическим путем, например, отщепление карбоксильной группы декарбоксилазой. 

  5. Изомеразы – ферменты, катализирующие превращение одного изомера в другой: глюкозо-6-фосфат в глюкозо-1-фосфат. 

  6. Синтеазы – ферменты, катализирующие реакции синтеза, синтез пептидов из аминокислот, т.е. катализируют реакции соединения молекул с образование новых связей.