Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KOMBINAT_LEKTs.doc
Скачиваний:
46
Добавлен:
02.04.2015
Размер:
601.6 Кб
Скачать

4. Производящие функции

4.1. Определение производящих функций.Последовательности {un}, фигурирующей в какой-либо задаче, например, комбинаторной, удобно поставить в соответствие формальный степенной ряд

u(x) = ,

который называется производящей функцией данной последовательности. Слова “формальный ряд” означает, что эту формулу мы трактуем только как удобную запись последовательности. Для нас сейчас несущественно, при каких значениях х ряд сходится и сходится ли вообще, т.к. вычислять значение u(x) мы никогда не будем.

Пример 3.5. Известно, что= 1 + х + х2+ … + хn+ … Следовательно, функцияявляется производящей для последовательности 1,…, 1.

Пример 3.6. Согласно формуле бинома Ньютона (1 + х)n =. Следовательно, функция (1 + х)nявляется производящей для конечной последовательности.

4.2. Операции с производящими функциями.Рассмотрим основные технические приемы, применяемые в работе с производящими функциями.

4.2.а. Линейная комбинация.Если функцияu(x) соответствует последовательности {un}, аv(x) – последовательности {vn}, то функцияau(x) +bv(x) (aиb– константы) является производящей для последовательности {aun+bvn}.

4.2.б. Сдвиг.Если функцияu(x) соответствует последовательности {un}, то функции хmu(x) соответствует последовательность… – сдвиг вправо.

Аналогично, функция является производящей для последовательностиum,um+1, … – сдвиг влево.

4.2.в. Умножение.Если функцияu(x) соответствует последовательности {un}, аv(x) – последовательности {vn}, то функцииu(x)v(x) соответствует последовательность {wn}, где

–формула Коши. Например, w0=u0v0;w1=u0v1+u1 v0;w2=u0v2+u1v1+u2v0.

Пример 3.7.Пустьu(x) соответствует последовательности {un}, аv(x) =– производящая функция для последовательности 1,…, 1 (см. пример 3.5). Тогда функция

= u0+ (u0+u1)x+ (u0+u1+u2)x2+… (3.9)

является производящей для последовательности частичных сумм.

4.2.г. Дифференцирование и интегрирование.Еслиu(x) соответствует последовательности {un}, то по правилу дифференцирования рядов

u(x) = 0 +u1+ 2u2x+ 3u3x2+ ….

То есть u(x) является производящей функцией для последовательности {kuk}.

Аналогично . То естьявляется производящей функцией для последовательности.

Пример 3.8.=. Следовательно, функцияявляется производящей для последовательности {k}.

Далее,

(3.10)

Следовательно, является производящей функцией для последовательности.

Сопоставляя (3.10) с (3.9) получаем

,

где – гармонические числа.

4.3. Пример использования производящих функций

Решим с помощью производящих функций следующую комбинаторную задачу.

Пример 3.9.На окружности находится 2nточек. Сколькими способами можно их попарно соединить так, чтобы полученные отрезки не соединялись друг с другом?

Решение.Обозначимun – число способов соединить 2nточек. Построим рекуррентное соотношение.

Формально положим u0= 1 (нет точек, нет пересечений, следовательно, способ единственный).u1= 1 – очевидно, т.к. две точки соединяются единственным способом, и пересечений нет.u2= 2. Способы соединения изображены на рис. 3.1.

Рис. 3.1. Способы соединения 4-х точек

Пусть n> 1. Выберем одну из 2(n+ 1) точек, обозначим ее А. Соединим А с вершиной В, выбрав ее так, чтобы с обеих сторон от соединяющей их линии находилось четное число точек. Пусть слева будет 2kточек, справа – 2(n–k). 2kточек можно соединить между собойukспособами, 2(n–k) точек –unkспособами. При этом линии не пересекутся, т.к. 2kи 2(n–k) точек расположены по разные сторона от АВ.

Следовательно, при фиксированном kполучимukunkспособов соединения. Ноkменяется от 0 доn. Следовательно,

un +1=u0un+u1un–1+ … +unu0. (3.11)

Получили искомое нелинейное рекуррентное соотношение, формула общего решения которого нам, к сожалению, неизвестна.

Чтобы получить явную формулу для un, построим для этой последовательности производящую функцию.

u(x) =u0+u1х +u2x2+u3x3+ …. (3.12)

Имеем, согласно формуле Коши:

[ u(x) ]2 = (u0)2 + (u0u1 + u1u0 ) х + (u0u2 + u1u1 + u2u02 + …

Видно, что коэффициенты для разложения [ u(x) ]2 можно получить с помощью формулы (3.11).

Из (3.12) имеем: =u1 +u2x+u3x2+ ….

Подставим в эту формулу выражение ukсогласно (3.11). С учетом того, чтоu1= (u0)2получим:. Следовательно, имеем квадратное уравнение относительноu(х). Решив его, получим.

По формуле бинома имеем:

++…= 1 –.

Умножим каждое k-е слагаемое на 1 =. Тогда коэффициентk-го члена ряда равен:

= ==.

Отсюда

.

Для того, чтобы коэффициенты ряда были положительными, надо перед корнем в формуле u(x) брать знак “–”. Заменим индекс суммированияkнаk+1. В результате получим:

u(x) = == .

Окончательно – это так называемые,числа Каталана.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]