Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Extracellular and Intracellular Signaling (книга).pdf
Скачиваний:
14
Добавлен:
31.03.2015
Размер:
13.39 Mб
Скачать

DNA, Nuclear Cell Signaling and Neurodegeneration

183

10.4 Gene Transcription and DNA Damage

A very useful model for DNA damage in the brain is the tertiary-butylhy- droperoxide (tBuOOH) model.84,85 Following intracerebroventricular injection of tBuOOH, DNA fragments within minutes followed by apoptosis and necrosis of many cells in the brain.70 DNA fragmentation and PARP activation lead to changes in gene expression within 1 hour or more (Table 10.1).86 Most of the genes are involved in apoptosis. Reactive oxygen species, such as hydrogen peroxide, at the cell surface activate TNFR that activates caspases 3, 6, 7 and 8. Hydrogen peroxide penetrates into the cell and inactivates various cytoplasmic IAPs. Hydrogen peroxide also penetrates into the nucleus, fragments DNA, activates PARP and increases the transcription of genes for caspases 3, 6 and 7. Hydrogen peroxide penetrates into the endoplasmic reticulum and increases the release of active caspase 4. All of these events are critical to the induction of apoptosis. Of course, apoptosis is a cascade of several events for which the full sequence is not completely understood. However, if enough pro-apoptotic events are activated and enough antiapoptotic events are inhibited, apoptosis occurs. Nicotinamide can prevent apoptosis by interfering with the cascade of apoptotic events.86

As mentioned above, PARP and p53 bind to DNA breaks and become activated. Another protein that is activated and involved in altering gene transcription during DNA damage is cohesin.87 Cohesin is required to hold together the chromatid pairs. There is a variety of p53-mediated alterations in gene expression following DNA damage. These alterations involve activation of the forkhead transcription factor (Foxp3).88 DNA damage leads to histone activation and neovascularization, that may be critical in stroke.89 Neovascularization helps restore blood flow to brain areas that are recovering from stroke. It is not clear if neovascularization is helpful or harmful in Alzheimer’s

Table 10.1 List of genes observed to be significantly di erently expressed between t-BuOOH treated and control HCN2 cells 1 to 6 hrs following analysis.

Name of gene

Gene ID

 

 

Bcl2 like 11

NM_006538

TNF (ligand) superfamily, member 9

NM_003811

Caspase 4

NM_001225

Nucleolar protein 3

NM_003946

Lymphotoxin beta receptor (TNFR superfamily, member 3)

NM_002342

Myeloid cell leukemia sequence (mcl-1)

NM_021960

Bacculoviral IAP containing repeat 6

NM_016252

cIAP1

NM_001166

cIAP2

NM_001165

Mdm-2

NM_002392

TNFR2

NM_001066

 

 

Bcl2 like 11 is the B-cell lymphoma 2 like 11 gene also called apoptosis facilitator. TNFR is tumor necrosis factor receptor. IAP is inhibitor of apoptosis proteins. Mdm is murine double minute oncogene, a suppressor of P53 expression.

184

Chapter 10

disease and Parkinson’s disease. Neovascularization can produce arterioles that leak until they become well established and form tight junctions between endothelial cells. Leaky arterioles may produce more damage in stroke, Alzheimer’s disease and Parkinson’s disease.

10.5 Conclusions

Neurodegeneration may be caused by or increased by toxic lifestyles. Diet and exercise improvements could be encouraged to prevent or perhaps control neurodegenerative diseases. Toxic lifestyles lead to adipokine elevations in the blood and oxygen radical formation, possibly through visfatin, CD38 and NADH oxidase mechanisms. Hydrogen peroxide formed during this process crosses cell membranes and damages DNA. The cells first damaged in this process are probably the endothelial cells of the blood-brain barrier. Adipokines cause white blood cells and platelets to stick to the damaged blood-brain barrier. This sets up an inflammatory process that produces more damage. The leaky blood-brain barrier allows the infiltration of inflammatory cells into the brain parenchyma. These inflammatory cells produce oxygen radicals that damage the DNA in neurons and other brain cells leading to brain lesions. In Alzheimer’s disease these lesions are most important in the hippocampus, cerebral cortex and other areas. In Parkinson’s disease these lesions are critical in the dopaminergic neurons of the substantia nigra, dopaminergic neuronal projections in the basal ganglia and other regions.

Stroke is a rapid process that also involves toxic lifestyles. Adipokines damage arteries in the body. Clots and thrombi are produced that lodge in the middle cerebral artery and other locations to produce ischemia, followed later by reperfusion as the clot or thrombus is removed or resolves. Ischemia and reperfusion produce oxygen radicals and hydrogen peroxide that damage cellular DNA leading to cell death through apoptosis and necrosis. Brain lesions are typically seen in the basal ganglia, hippocampus, cerebral cortex and other regions.

References

1.C. Costantini, R. Weindruch and A. Bonen, Biochem. J., 2005, 391, 51.

2.R. Cutler, J. Kelly, K. Storie, W. Pedersen, A. Tamara, K. Hatanpaa, J. Troncoso and M. Mattson, Proc. Natl. Acad. Sci. U.S.A., 2004, 101, 2070.

3.N. Rasouli and P. Kern, J. Clin. Endocrinol. Metab., 2008, 93, S64.

4.J. Beltowski, A. Jamroz-Wisniewska and S. Widomska, Cardiovasc. Hematol. Disc. Drug Targets, 2008, 8, 7.

5.C. Lyon, R. Law and W. Hsueh, Endocrinol., 2003, 144, 2195.

6.T. You and B. Nicklas, Curr. Diabetes Rep., 2008, 8, 7.

7.E. Corpeleijn, E. Feskens, E. Jansen, M. Mensink, W. Saris and E. Blaak,

Diabetes Care, 2007, 30, 3125.

DNA, Nuclear Cell Signaling and Neurodegeneration

185

8.M. Rokling-Andersen, J. Reseland, M. Velerod, S. Anderssen, D. Jacobs,

P.Urdal, J. Jansson and C. Drevon, Am. J. Clin. Nutr., 2007, 86, 1293.

9.T. Kondo, I. Kobayashi and M. Murakami, Endocrine J., 2006, 53, 189.

10.K. Lee, K. Song, H. Lee, Y. Kim, S. Lee, D. Kim, W. Hwang, S. Choe,

Y.Kim and T. Kim, Obesity, 2006, 14, 423.

11.A. Pani, A. Mandas, G. Diaz, C. Abete, P. Cocco, F. Angius, A. Brundu,

N.Mucaka, M. Pais, A. Saba, L. Barberini, C. Zaru, M. Palmas, P. Putzu,

A.Mocali, F. Paoletti, P. La Colla and S. Dessi, BMC Med., 2009, 7, 66.

12.G. Razay, A. Vreugdenhil and G. Wilcock, Arch. Neurol., 2007, 64, 93.

13.I. Martins, T. Berger, M. Sharman, G. Verdile, S. Fuller and R. Martins,

J.Neurochem., 2009, 111, 1275.

14.J. Kim, J. Castellano, H. Jiang, J. Basak, M. Parsadanian, V. Pham,

S.Mason, S. Paul and D. Holtzman, Neuron, 2009, 64, 632.

15.G. Siest, P. Bertrand and B. Qin, Clin. Chem. Lab. Med., 2000, 38, 721.

16.H. Satoi, H. Tomimoto, R. Ohtani, T. Kitano, T. Kondo, M. Watanabe,

N.Oka, I. Akiguchi, S. Furuya, Y. Hirabayashi and T. Okazaki, Neurosci., 2005, 130, 657.

17.P. Katsel, C. Li and V. Haroutunian, Neurochem. Res., 2007, 32, 845.

18.L. Barrier, S. Ingrand, A. Piriou, A. Touzalin and B. Fauconneau,

Neurosci. Lett., 2005, 385, 224.

19.N. Marks, M. Berg, M. Saito and M. Saito, Brain Res., 2008, 1191, 136.

20.X. Han, D. Holtzman, D. McKeel, J. Kelley and J. Morris, J. Neurochem., 2002, 82, 809.

21.K. Hall, J. Murrell and A. Ogunniyi, Neurol., 2006, 66, 223.

22.L. Kuller, K. Margolis, S. Gaussoin, N. Bryan, D. Kerwin, M. Limacher,

S.Wassertheil-Smoller, H. Williamson and J. Robinson, J. Clin. Hypertens., 2010, 12, 203.

23.J. Burns, D. Johnson, A. Watts, R. Swerdlow and W. Brooks, Arch. Neurol., 2010, 67, 428.

24.Y. Gu, J. Nieves, Y. Stern, J. Luchsinger and N. Scarmeas, Arch. Neurol., 2010, 67, 1.

25.N. Scarmeas, Y. Stern, R. Mayeux and J. Luchsinger, Arch. Neurol., 2006, 63, 1709.

26.W. Lieb, A. Beiser, R. Vasan, Z. Tan, R. Au, T. Harris, R. Roubeno ,

S.Auerbach, C. DeCarli, P. Wolf and S. Seshadri, JAMA, 2009, 302, 2565.

27.C. Costantini, R. Weindruch, G. Della Valle and L. Puglielli, Biochem. J., 2005, 391, 59.

28.M. Grimm, H. Grimm and T. Hartmann, Trends Mol. Med., 2007, 13, 337.

29.K. Wynne, Am. J. Med., 2003, 115, 29S.

30.H. Li, P. Junk, A. Huwiler, C. Burkhardt, T. Wallerath, J. Pfeilschifter and

U.Forstermann, Circ., 2002, 106, 2250.

31.S. Chen, C. Hu, D. Yang, A. Nassief, H. Chen, K. Yin, J. Xu and C. Hsu,

Ann. N.Y. Acad. Sci., 2005, 1042, 357.

32.A. Eldreich-Epstein, L. Tran, O. Cox, E. Huang, W. Laug, H. Shimada and M. Millard, Blood, 2005, 105, 4353.

186

Chapter 10

33.S. Stamatovic, P. Shakui, R. Keep, B. Moore, S. Kunkel, N. Van Rooijen and A. Andjelkovic, J. Cereb. Blood Flow Metab., 2005, 25, 593.

34.M. Fiala, Q. Liu, J. Sayre, V. Pop, V. Brahmandam, M. Graves and

H.Vinters, Eur. J. Clin. Invest., 2002, 32, 360.

35.A. Jana and K. Pahan, J. Biol. Chem., 2004, 279, 51451.

36.G. Arboleda, T. Huang, C. Waters, A. Verkhratsky, P. Fernyhough and

R.Gibson, Eur. J. Neurosci., 2007, 25, 3030.

37.C. Gong, F. Liu, I. Grundke-Iqbal and K. Iqbal, J. Alzheimer’s Dis., 2006, 9, 1.

38.S. Hoyer, Eur. J. Pharmacol., 2004, 490, 115.

39.I. Matia and V. Di Marzo, Trends Endocrinol. Metab., 2006, 18, 27.

40.D. Centonze, A. Finazzi-Agro, G. Bernardi and M. Maccarrone, Trends Pharmacol. Sci., 2007, 28, 180.

41.A. Hartz, D. Miller and B. Bauer, Mol. Pharmacol., 2010, 77, 715.

42.M. Fiala, Q. Liu, J. Sayre, V. Pop, V. Brahmandam, V. Graves and

M.Vinters, Eur. J. Clin. Invest., 2002, 32, 360.

43.S. Stamatovic, P. Shakui, R. Keep, B. Moore, S. Kunkel, N. Van Rooijen and A. Andjelkovic, J. Cereb. Blood Flow Metab., 2005, 25, 593.

44.A. Reijerkerk, G. Kooij, S. van der Pol, T. Leyen, B. van Het Hof,

P.Couraud, D. Vivien, C. Dijkstra and H. de Vries, J. Immunol., 2008, 181, 3567.

45.J. Sethi and A. Vidal-Puig, Trends Mol. Med., 2005, 11, 344.

46.J. Revollo, A. Grimm and S. Imai, Curr. Opinion Gastroenterol., 2007, 23, 164.

47.C. Haskell, M. Wong, A. Williams and L. Lee, Med. Ped. Oncol., 1996, 27, 165.

48.F. Berger, M. Ramirez-Hernandez and M. Ziegler, Trends Biochem. Sci., 2004, 29, 111.

49.J. Beckman, D. Parks, J. Pearson, P. Marshall and B. Freeman, Free Radic. Biol. Med., 1989, 6, 607.

50.E. Ellis, D. Guberski, B. Hutson and M. Grant, Nitric Oxide Biol. Chem., 2002, 6, 295.

51.F. Martin-Romero, E. Garcia-Martin and C. Gutierrez-Merino, J. Neurochem., 2002, 82, 705.

52.T. Peng, X. Lu and Q. Feng, Circ., 2005, 111, 1637.

53.S. Malik, F. Vaillant and A. Lawen, Biofactors, 2004, 20, 189.

54.M. Lupke, J. Rollwitz and M. Simko, Free Radic. Res., 2004, 38, 985.

55.D. Morre, F. Guo and D. Morre, Mol. Cell. Biochem., 2003, 254, 101.

56.M. Berridge and A. Tan, Antiox. Redox Signaling, 2000, 2, 277.

57.H. Sumimoto, K. Miyano and R. Takeya, Biochem. Biophys. Res. Commun., 2005, 338, 677.

58.C. Markert, D. Morre and D. Morre, Biofactors, 2004, 20, 207.

59.J. Adams and L. Klaidman, Lett. Drug Design Disc., 2007, 4, 44.

60.P. Belenky, K. Bogan and C. Brenner, Trends Biochem. Sci., 2006, 32, 12.

61.C. Snell, P. Snell and C. Richards, J. Neurochem., 1984, 43, 1610.

62.T. Dahl, A. Yndestad, M. Skjelland, E. Oje, A. Dahl, A. Michelsen,

J.Damas, S. Tunheim, T. Ueland, C. Smith, B. Bendz, S. Tonstad,

L.Gullestad, S. Froland, K. Krohg-Sorensen, D. Russell, P. Aukrust and

B.Halvorsen, Circ., 2007, 115, 972.

DNA, Nuclear Cell Signaling and Neurodegeneration

187

63.A. Moschen, A. Kaser, B. Enrich, B. Mosheimer, M. Theurl, H. Niederegger and H. Tilg, J. Immunol., 2007, 178, 1748.

64.F. Lago, C. Dieguez J. Gomez-Reino and O. Gualillo, Cytokine Growth Factor Rev., 2007, 18, 313.

65.S. Ritchie and J. Connell, Nutr. Metab. Cardiovasc. Dis., 2007, 17, 319.

66.Y. Matsuzawa, FEBS Lett., 2006, 580, 2917.

67.B. Altura, A. Gebrewold, Z. Tao and B. Altura, Brain Res. Bull., 2002, 58, 271.

68.F. Wu and J. Wilson, Cardiovasc. Res., 2009, 81, 38.

69.L. Klaidman, M. Morales, S. Kem, J. Yang, M. Chang and J. Adams, Pharmacol., 2003, 69, 150.

70.J. Adams, L. Klaidman, Y. Huang, J. Cheng, Z. Wang, M. Nguyen,

B.Knusel and A. Kuda, Mol. Chem. Neuropath., 1994, 22, 123.

71.M. Meisterernst, G. Stelzer and R. Roeder, Proc. Natl. Acad. Sci. U.S.A., 1997, 94, 2261.

72.F. Althaus and C. Richter, in ADP-Ribosylation of Proteins. Enzymology and Biological Significance, Springer-Verlag, Berlin, 1987, p. 45.

73.S. Oei, J. Griesenbeck, M. Ziegler and M. Schweiger, Biochem., 1998, 37, 1465.

74.M. Malangua, J. Pleschke, H. Kleczkowska and F. Althaus, J. Biol. Chem., 1998, 17, 11839.

75.C. Cairns and R. White, EMBO. J., 1998, 17, 3112.

76.M. Jacobson and E. Jacobson, Trends Biochem. Sci., 1999, 24, 415.

77.L. Klaidman, S. Mukherjee and J. Adams, Biochim. Biophys. Acta, 2001, 1525, 136.

78.C. Szabo, L. Lim, S. Cuzzocrea, S. Getting, B. Zingarelli, R. Flower,

A.Salzman and M. Perretti, J. Exp. Med., 1997, 186, 1041.

79.W. Jonas, C. Rapoza and W. Blair, Inflamm. Res., 1996, 45, 330.

80.C. Szabo, Eur. J. Pharmacol., 1998, 350, 1.

81.M. Fujimura, T. Tominaga and T. Yoshimoto, Neurosci. Lett., 1997, 228, 107.

82.J. Adams, L. Williams, S. Mukherjee, L. Klaidman, G. Inouye, V. Cummins and M. Morales, in Free Radicals in Brain Pathophysiology, ed. G. Poli,

E.Cadenas and L. Packer, Marcel Dekker, Inc., New York, 2000, p. 55.

83.J. Yang, L. Klaidman, M. Chang, S. Kem, T. Sugawara, P. Chan and

J.Adams, Pharmacol. Biochem. Behav., 2002, 73, 901.

84.J. Adams, B. Wang, L. Klaidman, C. LeBel, I. Odunze and D. Shah, Free Radic. Biol. Med., 1993, 15, 195.

85.S. Mukherjee, R. Yasharel, L. Klaidman, T. Hutchin and J. Adams, Brain Res. Bull., 1995, 38, 595.

86.S. Mukherjee, M. Sonee and J. Adams, Lett. Drug Design Disc., 2005, 2, 551.

87.K. Feeney, C. Wasson and J. Parish, Biochem. J., 2010, 428, 147.

88.D. Jung, D. Jin, S. Hong, J. Kim, J. Shin, D. Kim, B. Cho, Y. Hwang,

J.Kang and W. Lee, J. Biol. Chem., 2010, 285, 7995.

89.A. Vasilopoulos, C. Deng and T. Chavakis, Int. J. Biochem. Cell Biol., 2010, 42, 193.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]