Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Practical.doc
Скачиваний:
138
Добавлен:
17.03.2015
Размер:
901.12 Кб
Скачать

Контрольные вопросы и упражнения

1. Какие вещества называют электролитами и неэлектролитами?

2. В чём заключаются основные положения электролитической диссоциации?

3. Объяснить процесс диссоциации солей, оснований и кислот с точки зрения строения атомов и молекул.

4. Реакции диссоциации электролитов являются обратимыми. Объяснить, что это значит? Как записывают уравнения реакций диссоциации?

5. Какие электролиты называют сильными, а какие слабыми? Привести примеры.

6. Как зависит способность электролитов к диссоциации от вида химической связи?

7. В 1 л раствора содержится 0,25 г хлорида натрия. Вычислить концентрацию ионов Na+,Clи общую концентрацию всех ионов.

8. В 1 л 0,01 н раствора муравьиной кислоты HCOOHпри комнатной температуре содержится 0,06 г ионов HCOO. Найти константу диссоциации.

9. При какой концентрации уксусной кислоты CH3COOHв водном растворе

 = 1% ? При какой концентрации в 2 раза больше, если Кдис.= 1,8.105 ?

10. Принимая во внимание первую ступень диссоциации сероводородной кислоты, определить (%) для её 0,01 М раствора (см. приложение 4).

11. Написать следующие молекулярные уравнения реакций в ионном виде:

а) Zn(OH)2 +2 NaOH = Na2ZnO2 + 2 H2O;

б) Na2ZnO2 + 2 HCl = 2 NaCl + Zn(OH)2.

5. Растворы

5.1 Растворимость веществ в воде. Свойства растворов

Раствором называется термодинамически устойчивая гомогенная (однофазная) система переменного состава, состоящая из двух или более компонентов (химических веществ). Компонентами, составляющими раствор, являются растворитель и растворенное вещество. Обычно растворителем считается тот компонент, который в чистом виде существует в таком же агрегатном состоянии, что и полученный раствор (например, в случае водного раствора соли растворителем является, конечно, вода). Если же оба компонента до растворения находились в одинаковом агрегатном состоянии (например, спирт и вода), то растворителем считается компонент, находящийся в большем количестве.

Растворы бывают жидкими, твердыми и газообразными.

Жидкие растворы – это растворы солей, сахара, спирта в воде. Жидкие растворы могут быть водными и неводными. Водные растворы – это растворы, в которых растворителем является вода. Неводные растворы – это растворы, в которых растворителями являются органические жидкости (бензол, спирт, эфир и т.д.). Твёрдые растворы – сплавы металлов. Газообразные растворы – воздух и другие смеси газов.

Процесс растворения. Растворение – это сложный физико-химический процесс. При физическом процессе происходит разрушение структуры растворяемого вещества и распределение его частиц между молекулами растворителя. Химический процесс – это взаимодействие молекул растворителя с частицами растворенного вещества. В результате этого взаимодействия образуютсясольваты. Если растворителем является вода, то образующиеся сольваты называютсягидратами.Процесс образования сольватов называется сольватацией, процесс образования гидратов – гидратацией. При упаривании водных растворов образуются кристаллогидраты – это кристаллические вещества, в состав которых входит определенное число молекул воды (кристаллизационная вода). Примеры кристаллогидратов:CuSO4.5H2O– пентагидрат сульфата меди (II);FeSO4 . 7H2O– гептагидрат сульфата железа (II).

Физический процесс растворения идёт с поглощениемэнергии, химический – свыделением. Если в результате гидратации (сольватации) выделяется больше энергии, чем ее поглощается при разрушении структуры вещества, то растворение –экзотермическийпроцесс. Выделение энергии происходит при растворенииNaOH,H2SO4,Na2CO3,ZnSO4и других веществ. Если для разрушения структуры вещества надо больше энергии, чем её выделяется при гидратации, то растворение –эндотермическийпроцесс. Поглощение энергии происходит при растворении в водеNaNO3,KCl,NH4NO3,K2SO4,NH4Clи некоторых других веществ.

Количество энергии, которое выделяется или поглощается при растворении, называется тепловым эффектом растворения.

Растворимостью вещества называется его способность распределяться в другом веществе в виде атомов, ионов или молекул с образованием термодинамически устойчивой системы переменного состава. Количественной характеристикой растворимости являетсякоэффициент растворимости, который показывает, какая максимальная масса вещества может раствориться в 1000 или 100 г воды при данной температуре. Растворимость вещества зависит от природы растворителя и вещества, от температуры и давления (для газов). Растворимость твердых веществ в основном увеличивается при повышении температуры. Растворимость газов с повышением температуры уменьшается, но при повышении давления увеличивается.

По растворимости в воде вещества делят на три группы:

1. Хорошо растворимые (р.). Растворимость веществ больше 10 г в 1000г воды. Например, 2000 г сахара растворяется в 1000 г воды, или в 1 л воды.

2. Малорастворимые (м.). Растворимость веществ от 0,01 г до 10 г в 1000 г воды. Например, 2 г гипса (CaSO4.2H2O) растворяется в 1000 г воды.

3. Практически нерастворимые (н.). Растворимость веществ меньше 0,01 г в 1000 г воды. Например, в 1000 г воды растворяется 1,5 .103гAgCl.

При растворении веществ могут образоваться насыщенные, ненасыщенные и пересыщенные растворы.

Насыщенный раствор– это раствор, который содержит максимальное количество растворяемого вещества при данных условиях. При добавлении вещества в такой раствор вещество больше не растворяется.

Ненасыщенный раствор– это раствор, который содержит меньше растворяемого вещества, чем насыщенный при данных условиях. При добавлении вещества в такой раствор вещество еще растворяется.

Иногда удается получить раствор, в котором растворенного вещества содержится больше, чем в насыщенном растворе при данной температуре. Такой раствор называется пересыщенным. Этот раствор получают при осторожном охлаждении насыщенного раствора до комнатной температуры. Пересыщенные растворы очень неустойчивы. Кристаллизацию вещества в таком растворе можно вызвать путем потирания стеклянной палочкой стенок сосуда, в котором находится данный раствор. Этот способ применяется при выполнении некоторых качественных реакций.

Растворимость вещества может выражаться и молярной концентрацией его насыщенного раствора (п.2.2).

Константа растворимости.Рассмотрим процессы, возникающие при взаимодействии малорастворимого, но сильного электролита сульфата барияBaSO4с водой. Под действием диполей воды ионыBa2+иSO42из кристаллической решеткиBaSO4 будут переходить в жидкую фазу. Одновременно с этим процессом под влиянием электростатического поля кристаллической решетки часть ионовBa2+иSO42вновь будет осаждаться (рис.3). При данной температуре в гетерогенной системе, наконец, установится равновесие: скорость процесса растворения (V1) будет равна скорости процесса осаждения (V2), т.е.

V1 =V2 :

BaSO4 ⇄ Ba2+ + SO42

твёрдая раствор

фаза

Рис. 3. Насыщенный раствор сульфата бария

Раствор, находящийся в равновесии с твердой фазой BaSO4, называетсянасыщеннымотносительно сульфата бария.

Насыщенный раствор представляет собой равновесную гетерогенную систему, которая характеризуется константой химического равновесия:

, (1)

где a(Ba2+) – активность ионов бария;a(SO42-) – активность сульфат-ионов;

a(BaSO4) – активность молекул сульфата бария.

Знаменатель этой дроби – активность кристаллического BaSO4– является постоянной величиной, равной единице. Произведение двух констант дает новую постоянную величину, которую называюттермодинамической константой растворимости и обозначают Кs :

Кs = a(Ba2+) . a(SO42-). (2)

Эту величину раньше называли произведением растворимости и обозначали ПР.

Таким образом, в насыщенном растворе малорастворимого сильного электролита произведение равновесных активностей его ионов есть величина постоянная при данной температуре.

Если принять, что в насыщенном растворе малорастворимого электролита коэффициент активности f~1, то активность ионов в таком случае можно заменить их концентрациями, так как а(X) =f(X).С(X). Термодинамическая константа растворимости Кsперейдет в концентрационную константу растворимости Кs:

Кs= С(Ba2+).С(SO42-), (3)

где С(Ba2+) и С(SO42) – равновесные концентрации ионовBa2+иSO42(моль/л) в насыщенном растворе сульфата бария.

Для упрощения расчётов обычно пользуются концентрационной константой растворимости Кs, принимаяf (Х) = 1 (приложение 2).

Если малорастворимый сильный электролит образует при диссоциации несколько ионов, то в выражение Кs (или Кs) входят соответствующие степени, равные стехиометрическим коэффициентам:

PbCl2⇄Pb2++2Cl;Ks= С (Pb2+) .С2(Cl);

Ag3PO4 3Ag++PO43;Ks= С3(Ag+).С (PO43).

В общем виде выражение концентрационной константы растворимости для электролита AmBnm An+ + n Bm имеет вид

Ks = Сm (An+) . Сn(Bm),

где С концентрации ионовAn+иBmв насыщенном растворе электролита в моль/л.

Величиной Ksпринято пользоваться только в отношении электролитов, растворимость которых в воде не превышает 0,01 моль/л.

Условия образования осадков

Предположим, сфактическая концентрация ионов трудно растворимого электролита в растворе.

Если Сm(An+).Сn (Bm-) >Ks, то произойдет образование осадка, т.к. раствор становится пересыщенным.

Если Сm(An+).Сn (Bm) <Ks, то раствор является ненасыщенным и осадок не образуется.

Свойства растворов. Ниже рассмотрим свойства растворов неэлектролитов. В случае электролитов в приведённые формулы вводится поправочный изотонический коэффициент.

Если в жидкости растворено нелетучее вещество, то давление насыщенного пара над раствором меньше давления насыщенного пара над чистым растворителем. Одновременно с понижением давления пара над раствором наблюдается изменение его температуры кипения и замерзания; температуры кипения растворов повышаются, а температуры замерзания понижаются по сравнению с температурами, характеризующими чистые растворители.

Относительное понижение температуры замерзания или относительное повышение температуры кипения раствора пропорционально его концентрации:

∆t = KСm ,

где К – константа (криоскопическая или эбулиоскопическая);

Сm– моляльная концентрация раствора, моль/1000 г растворителя.

Так как Сm=m/M, гдеm– масса вещества (г) в 1000 г растворителя,

М – молярная масса, приведенное уравнение можно представить:

;.

Таким образом, зная для каждого растворителя величину К, задав mи экспериментально определив ∆tв приборе, находят М растворенного вещества.

Молярная масса растворенного вещества может быть определена путём измерения осмотического давления раствора (π) и рассчитана по уравнению Вант – Гоффа:

;.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]