Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekuljarnaja Biologija Kletki v3

.pdf
Скачиваний:
27
Добавлен:
10.02.2015
Размер:
24.15 Mб
Скачать

321

Рис. 19-31. Временная суммация. Перекрывающиеся черные кривые накрашенной области показывают индивидуальный вклад каждого из последовательных пресинаптических импульсов в суммарный постсинаптический потенциал.

до того, как первый ПСП полностью затухнет, то этот второй ПСП суммируется с оставшимся «хвостом» первого. Когда после некоторого периода покоя приходит длинный залп быстро повторяющихся импульсов, каждый последующий ПСП будет накладываться на предыдущий, давая в итоге большой ПСП, величина которого отражает частоту разряда пресинаптического нейрона (рис. 19-31). Таким образом, суть временной суммации состоит в том, что частота получаемых сигналов преобразуется в величину суммарного ПСП.

19.4.2. Для передачи информации на большие расстояния суммарный ПСП снова преобразуется в частоту нервных импульсов [27]

Благодаря временной и пространственной суммации мембранный потенциал тела одного постсинаптического нейрона регулируется частотой разрядов множества пресинаптических нейронов. В результате интеграции всех входных сигналов постсинаптическая клетка формирует определенный ответ, обычно в виде импульсов для передачи сигналов другим клеткам, нередко находящимся в отдаленных частях организма. Этот ответный сигнал отражает величину суммарного ПСП в теле клетки. Однако, хотя суммарный ПСП все время плавно изменяется, потенциалы действия имеют постоянную амплитуду и подчиняются закону «всё или ничего». Единственной переменной величиной при передаче сигна-

322

Рис. 19-32. Перекодирование суммарного ПСП в частоту импульсного разряда в аксоне. Из графиков А и Б видно, как частота импульсов в аксоне возрастает с увеличением суммарного ПСП; на графике В представлена общая зависимость. Г-способ измерения суммарного ПСП. А и Б: на верхних графиках - суммарная интенсивность синаптических стимулов, получаемых телом клетки; на нижних графиках соответствующие разряды, посылаемые по аксону. На верхних графиках показано, как выглядели бы ПСП, если бы импульсный разряд был каким-то образом блокирован.

лов с помощью импульсов остается временной интервал между последовательными импульсами. Поэтому для передачи информации на большие расстояния величина суммарного ПСП должна быть преобразована, или перекодирована, в частоту импульсного разряда (рис. 19-32) Такое кодирование достигается с помощью специальной группы потен циал-зависимых ионных каналов, сосредоточенных у основания аксона в области,

называемой аксонным холмиком (см. рис. 19-30).

Прежде чем объяснить, как действуют такие каналы, необходимо сделать некоторые уточнения. Само по себе возникновение импульса приводит к резким изменениям мембранного потенциала всего тела клетки, который уже не будет прямо отражать суммарную синаптическую стимуляцию, получаемую клеткой. Поэтому очень трудно провести точный анализ кодирующего механизма. В последующем чисто качественном описании мы будем употреблять выражения «сила синаптической стимуляции» или «суммарный ПСП, имея в виду тот суммарный ПСП, который создавался бы при условии, что генерирование импульсов каким-то образом подавляется; и мы будем предполагать что именно этот основной суммарный ПСП и является причиной возникновения нервных импульсов.

19.4.3. Кодирование требует совместного действия различных ионных каналов [28]

Проведение нервных импульсов зависит главным образом, а во многих аксонах позвоночных почти полностью, от потенциал-зависимых натриевых каналов. Первоначально импульсы генерируются мембраной аксонного холмика, где таких каналов очень много. Но для осуществления особой функции кодирования мембрана аксонного холмика должна содержать еще по меньшей мере четыре класса ионных каналов - три избирательно проницаемых для ионов калия и один проницаемый для Са2 + . Три разновидности калиевых каналов обладают различными свойствами - мы будем называть их медленными, быстрыми и Са2+ - зависимыми калиевыми каналами. Кодирующие функции этих канала наиболее изучены на гигантских нейронах моллюсков, но те же принципы используются, по-видимому, и в других нейронах.

Чтобы понять, для чего нужны каналы нескольких типов, посмотрим, как будет вести себя мембрана нервной клетки, содержащая только один вид потенциал-зависимых каналов - натриевые каналы. При слабой синаптической стимуляции, не доводящей деполяризацию мембраны aксонного холмика до порогового уровня, потенциал действия не буди возникать. При постепенном усилении стимуляции порог будет достигнут, натриевые каналы откроются и возникнет потенциал действия.

323

В результате последующей инактивации натриевых каналов появившийся потенциал действия исчезнет. Прежде чем сможет возникнуть другой потенциал действия, натриевые каналы должны будут выйти из инактивированного состояния. Но для этого необходимо, чтобы величина мембранного потенциала вновь достигла большого отрицательного значения, а этого не произойдет, пока поддерживается сильный деполяризующий стимул (от ПСП). Поэтому для того, чтобы реполяризовать мембрану после импульса и подготовить клетку для проведения следующего импульса, нужен еще один вид каналов. Эту функцию выполняют медленные калиевые каналы, которые уже упоминались, когда речь шла о распространении потенциала действия (разд. 19.2.2). Эти каналы зависимы от потенциала и открываются при деполяризации мембраны так же, как и натриевые, но происходит это с некоторым запаздыванием. Открываясь во время спада потенциала действия, калиевые каналы пропускают ионы К+ из клетки наружу, в результате чего устраняется эффект даже длительного деполяризующего стимула и мембранный потенциал возвращается к уровню равновесного калиевого потенциала. Этот потенциал настолько отрицателен, что натриевые каналы выводятся из состояния инактивации. Кроме того, прекращается и выход калия из клетки: реполяризация мембраны приводит к тому, что медленные калиевые каналы опять закрываются (так и не успев инактивироваться). Как только произошла реполяризация, деполяризующие стимулы от синаптических входов могут вновь поднять мембранный потенциал до порогового уровня и вызвать очередной потенциал действия. Благодаря этому непрерывная стимуляция дендритов и тела клетки приводит к многократно повторяющемуся возбуждению аксона.

Однако недостаточно только непрерывности разряда - нужно еще, чтобы его частота отражала интенсивность стимуляции. Детальные расчеты показывают, что простая система натриевых и медленных калиевых каналов не отвечает этому требованию. Если сила постоянного стимула ниже определенного порогового уровня, потенциалов действия не будет вовсе; если же сила стимуляции превысит порог, то сразу же начнется частая импульсация. Проблему решают быстрые калиевые каналы (называемые также А-каналами). Эти каналы тоже потенциалзависимы и открываются при деполяризации мембраны, но специфическая зависимость их от потенциала и кинетика инактивации такова, что они снижают частоту разряда при уровнях стимуляции, которые лишь ненамного выше порога. Таким образом, быстрые калиевые каналы помогают устранить разрыв непрерывности в соотношении между интенсивностью стимула и частотой разряда; в результате частота импульсов пропорциональна силе деполяризующего стимула в очень широком диапазоне (см. рис. 19-32).

19.4.4. Адаптация уменьшает реакцию на постоянный стимул [29]

Обычно процесс кодирования видоизменяют еще два типа каналов, имеющихся в аксонном холмике. О них уже упоминалось - это

потенциал-зависимые кальциевые каналы и Са2 +-зависимые калиевые каналы. Первые подобны кальциевым каналам, участвующим в высвобождении медиатора из окончаний аксона: в области аксонного холмика эти каналы открываются при возникновении потенциала действия и пропускают Са2+ внутрь аксона. Са2 +-зависимые калиевые каналы отличаются от всех других каналов, описанных ранее. Они открываются при повышении концентрации кальция у внутренней поверхности мембраны нервной клетки.

Предположим, что сильный и продолжительный деполяризующий стимул приводит к длительной импульсации. В результате каждого

324

Рис. 19-33. Адаптация. При длительной стимуляции постоянной силы реакция клетки на стимул постепенно ослабевает, что выражается в уменьшении частоты импульсного разряда.

импульса в клетку через потенциал-зависимые кальциевые каналы переходит небольшое количество ионов Са2 + , так что их внутриклеточная концентрация постепенно поднимается до высокого уровня. Это ведет к открытию Са2 +-зависимых калиевых каналов, и проницаемость мембраны для калия повышается, что затрудняет деполяризацию и увеличивает интервалы между последовательными импульсами. Таким образом, при длительном воздействии постоянного стимула сила ответа нейрона постепенно снижается. Это явление, в основе которого могут лежать и другие механизмы, называют адаптацией (рис. 19-33). Благодаря адаптации нейрон, так же как и нервная система в целом, способен с высокой чувствительностью реагировать на изменение стимула, даже если оно происходит на фоне сильной постоянной стимуляции (разд. 19.6.8). Это одно из общих приспособлений, благодаря которым мы, например, не замечаем постоянного давления одежды на наше тело, но в то же время быстро реагируем на внезапное прикосновение.

19.4.5. Сигналы могут передаваться не только по аксонам [30]

В типичном нейроне, о котором говорилось выше, дендриты и аксон резко различаются между собой по строению и функции. Однако некоторые нейроны не соответствуют такой схеме, хотя молекулярные основы их функционирования те же. Например, у большинства беспозвоночных нейроны чаще всего имеют униполярную организацию: тело клетки связано одним-единственным «стебельком» с системой ветвящихся клеточных отростков, среди которых не всегда можно отличить дендриты от аксона (рис. 19-34). Функциональные отличия тоже мот быть «смазаны», что встречается и у позвоночных, и у беспозвоночных:

325

Рис. 19-34. Нейроны мухи. Строе-кие их типично для большинства нейронов беспозвоночных животных; тело клетки соединено с системой отростков при помощи стебелька, так что нет дендритов, отходящих прямо от тела. Сходной организацией обладают и сенсорные нейроны из спинномозговых ганглиев позвоночных. (N. Strausfield, Atlas of an Insect Brain, New York, Springer, 1976.)

отростки, которые по их строению можно отнести к дендритам, часто образуют как пре-, так и постсинаптические структуры и способны как принимать сигналы, так и передавать их другим клеткам. И наоборот, входные синаптические сигналы иногда воспринимаются «стратегическими» участками аксона - например, вблизи окончания, где эти сигналы могут усиливать или тормозить высвобождение нейромедиатора из данного окончания, не влияя на передачу в окончаниях других ветвей того же аксона (рис. 19-35). Пример этого важного механизма пресинаптического торможения и пресинаптического облегчения будет рассмотрен позже (разд. 19.5.4).

Синапсы, через которые дендриты передают стимулы другой клетке, играют важную роль в коммуникации между нейронами, расположенными друг от друга на расстоянии нескольких миллиметров или еще ближе. На такие расстояния электрические сигналы могут передаваться по дендриту пассивно от постсинаптического участка, где они были восприняты, до пресинаптического участка, где они регулируют высвобождение медиатора. Встречаются даже нейроны, совсем не имеющие аксона, не проводящие потенциалов действия и передающие все сигналы через дендриты. Более того, если дендритное дерево велико, то отдельные части его могут более или менее независимо использоваться для связи и обработки информации. Диапазон возможностей некоторых нейронов расширяется еще больше благодаря наличию в мембране дендритов потенциал-зависимых каналов, что позволяет дендритам проводить потенциалы действия. Таким образом, даже отдельный нейрон способен функционировать как очень сложное вычислительное устройство.

Заключение

Дендриты и тело типичного нейрона принимают множество различных возбуждающих и тормозных синаптических сигналов, которые подвергаются пространственной и временной суммации и создают суммарный постсинаптический потенциал тела клетки. Для передачи сигналов на большие расстояния величина этого потенциала преобразуется в частоту импульсного разряда при помощи системы ионных каналов в мембране аксонного холмика. Механизму такого кодирования часто свойственна способность к адаптации, и тогда клетка слабо реагирует на постоянный

Рис. 19-35. Аксоаксонный синапс. Нейромедиатор, выделяемый окончанием аксона клетки В, воздействует на каналы в окончании аксона клетки А, изменяя тем самым число квантов нейромедиатора, поступающих на клетку В при возбуждении Б. Если возбуждение Б ослабляет силу стимуляции В клеткой А, то говорят, что Б осуществляет пресинаптическое торможение. Противоположный эффект называют пресинаптическим облегчением.

326

стимул, но чувствительна ко всякому изменению его силы. Существует много вариантов описанной общей схемы; например, не все нейроны дают ответ в виде потенциалов действия, дендриты могут быть не только постсинаптическими, но и пресинаптическими, а аксон - не только пресинаптическим, но и постсинаптическим.

19.5.Рецепторы, не связанные с каналами, и синаптическая модуляция [13, 31]

Втех синапсах, где используются рецепторы, связанные с каналами, нейромедиаторы опосредуют быстрые, простые и кратковременные эффекты и к тому же место их воздействия определено с большой точностью. Медиатор, выделяемый одним окончанием аксона, воздействует лишь на одну постсинаптическую клетку. В противоположность этому рецепторы, не связанные с каналами, могут вызывать медленные, сложные и продолжительные эффекты, нередко рассеянные в пространстве. В этом случае медиатор, выделяемый одним окончанием, может оказывать влияние сразу на несколько клеток, расположенных поблизости. Такие медленные эффекты часто приводят в качестве примеров нейромодуляции, так как они влияют на быстрые ответы, опосредуемые рецепторами той же клетки, связанными с каналами. В основе действия рецепторов, не связанных с каналами, лежат те же молекулярные механизмы, которые опосредуют действие гормонов и локальных химических медиаторов за пределами нервной системы; вероятно, многие рецепторы в обоих случаях идентичны.

Как уже говорилось в гл. 12 (разд. 12.3.1), расположенные на поверхности клетки рецепторы для сигнальных молекул, не связанные с каналами, подразделяют на две большие группы: 1) каталитические рецепторы, большей частью представленные тирозин-специфическими протеинкиназами, которые в результате присоединения лиганда активируются и фосфорилируют остатки тирозина во внутриклеточных белках; и 2) рецепторы, связанные с G-белком, передающие сигнал внутрь клети путем активации регулярного GTP-связывающего белка (G-белка), который в свою очередь активирует или инактивирует мембраносвязанный фермент или ионный канал. По-видимому, большая часть изученных нейромедиаторных рецепторов, не связанных с каналами, связана с G-белком, который участвует в передаче сигнала одним из трех способов:

1. G-белок может активировать или инактивировать аденилатциклазу, регулируя тем самым содержание циклического AMP в постсинаптической клетке. В свою очередь циклический AMP регулирует активность сАМР-зависимой протеинкиназы (А-киназы - см. разд. 12,4.1), которая наряду с другими белками-мишенями способна фосфорилировать ионные каналы плазматической мембраны, изменяя их свойства. Циклический AMP способен также влиять на некоторые ионные! каналы, непосредственно присоединяясь к ним.

2. G-белок может запускать инозитолфосфолипидный путь (разд. 12.3.9), активируя при этом протеинкиназу С (С-киназу) и вызывая выход Са2+ в цитозоль постсинаптической клетки из содержащего кальций компартмента. С-киназа регулирует поведение ионных каналов, фосфорилируя их. Ионы Са2 + могут влиять на поведение ионных каналов либо непосредственно, либо косвенно через Са2 +-зависимую протеинкиназу, фосфорилирующую канал (разд. 12.4.3).

3. G-белок может взаимодействовать непосредственно с ионными каналами, заставляя их открываться или закрываться. В каждом случае определенные молекулы действуют в постсинаптической клетке как связующие звенья, или внутриклеточные посредники,

327

Рис. 19-36. Небольшой пучок вегетативных двигательных аксонов, иннервирующих гладкомышечные клетки мочеточника. Микрофотография, полученная с помощью сканирующего электронного микроскопа. «Варикозные» расширения содержат синаптические пузырьки, наполненные нейромедиатором норадреналином. Синапсы здесь плохо различимы; ширина пространства между местом выделения медиатора и мембраной ближайшей мышечной клетки, на которую он должен воздействовать, может достигать 0,2 мкм. (S. Tachibana et al., J. Urol., 134, 582-568, 1985.

Copyright by Williams a. Wilkins, 1985.)

которые диффундируют в клетке и передают сигнал от рецептора другим клеточным компонентам. Чем больше этапов включает этот каскад внутриклеточных посредников, тем больше возможностей для усиления и регуляции сигнала (разд. 12.4.6).

Идентифицировано более 50 нейромедиаторов, взаимодействующих с рецепторами, не связанными с каналами, и вызывающих разнообразные и сложные эффекты. Некоторые из них, например ацетилхолин, могут присоединяться к рецепторам, связанным с каналами, тогда как другие, такие как нейропептиды (см. ниже), видимо, не способны к этому.

19.5.1. Рецепторы, не связанные с каналами, опосредуют медленные и рассеянные эффекты [32]

В то время как рецепторы, связанные с каналами, вызывают электрические изменения в постсинаптической клетке за несколько миллисекунд или еще быстрее, рецепторам, не связанным с каналами, для достижения эффекта требуется несколько сотен миллисекунд или более. Этого следовало ожидать, так как между первоначальным сигналом и конечным ответом должна пройти серия ферментативных реакций. Более того, часто сам сигнал «размыт» не только во времени, но и в пространстве.

Ярким примером может служить иннервация гладкой мускулатуры аксонами, выделяющими норадреналин, который активирует аденилатциклазу через посредство рецептора, связанного с G-белком. В этом случае медиатор высвобождается не из нервных окончаний, а из утолщений или узелков, расположенных вдоль аксона (рис. 19-36). В этих узелках содержатся синаптические пузырьки, но здесь нет активных зон, определяющих точные места выхода медиатора. Кроме того, сами узелки не прилегают к каким-то специализированным рецептивным участкам постсинаптической клетки; вместо этого медиатор диффундирует в широких пределах, воздействуя сразу на несколько клеток, расположенных вблизи (подобно локальному химическому медиатору - см. разд. 12.7). Вероятно, многие сигнальные молекулы, взаимодействующие с каталитическими или связанными с G-белком рецепторами в центральной нервной системе, действуют таким же паракринным способом. Действительно, многие из нейромедиаторов используются как гормоны или локальные химические медиаторы за пределами нервной системы: например, норадреналин, а также близко родственный ему адреналин выделяются в качестве гормонов из надпочечников.

Адреналин и норадреналин относятся к семейству моноаминовых медиаторов, выполняющих разнообразные функции как у позвоночных, так и у беспозвоночных и имеющих важное значение для медицины (рис. 19-37, А). Можно создать лекарственные препараты, которые будут препятствовать синтезу, поглощению или расщеплению определенных моноаминов или же взаимодействовать с некоторыми подгруппами их рецепторов. Некоторые из таких препаратов оказались полезными при лечении нервных и психических заболеваний. Например, при шизофрении часто с успехом используют препараты, блокирующие определенные виды дофаминовых рецепторов, а препараты, повышающие концентрацию дофамина в мозгу, резко улучшают двигательные функции при болезни Паркинсона (рис. 19-37, Б). При лечении глубоких депрессий часто бывают эффективны препараты, повышающие концентрацию норадреналина и/или серотонина в синапсах.

328

Рис. 19-37. А. Нейромедиаторы из семейства моноаминов. Б. Схема распределения нейронов, содержащих дофамин, в мозгу человека. Нарушение координации движений, наблюдаемое при болезни Паркинсона, связано с гибелью многих клеток, относящихся к определенной группе дофаминсодержащих нейронов (находящихся в substantia nigra). Симптомы заболевания можно смягчить с помощью лекарственных препаратов, способствующих синтезу дофамина и подавляющих его разрушение. Распределение нейронов, содержащих моноамины, можно выявить, обработав срезы ткани формальдегидом, который реагирует с моноаминами с образованием флуоресцирующих продуктов.

19.5.2. Самую большую группу нейромедиаторов образуют нейронептиды [32, 33]

Большая часть сигнальных молекул, используемых в различных часта организма, используется также и нейронами. В особенности это относится к небольшим белковым молекулам или пептидам, которые служат гормонами и локальными медиаторами для регуляции таких функций, как поддержание кровяного давления, секреция пищеварительных ферментов и пролиферация клеток.

За последние десять лет в изучении нейропептидов достигнута значительные успехи. Большую роль в этом сыграла иммуноцитохимия. Можно получить антитела к пептиду, обнаруженному в какой-либо ткани, а затем использовать эти антитела для поиска того же или иных структурно близких пептидов в других тканях организма. С помощью этого метода в нейронах были найдены пептиды, которые прежде не относили к пептидам нервной системы, а также многие новые разновидности пептидов. В большинстве случаев данные в пользу того, что эти нейронептиды (рис. 19-38) служат нейромедиаторами, убедительны, но все же недостаточны. Например, можно показать, что антитела к данному пептиду связываются определенными нейронами и окончаниями их аксонов, а сам пептид при локальном введении способен имитировать эффекты, вызываемые активностью этих нейронов. Иногда удается показать, и это более убедительно, что нейроны в активном состоянии секретируют определенный пептид, а эффект, вызываемый активностью этих нейронов, блокируется антителами к обнаруженному пептиду. По-видимому, нейропептиды играют особенно важную роль в регуляции таких ощущений и потребностей, как боль, наслаждение, голод, жажда и половое влечение.

Медиаторы непептидной природы синтезируются при участии ферментов, которые обычно находятся как в теле нейрона, так и в окончаниях аксона, поэтому запасы медиатора в синапсе могут восстанавливаться очень быстро даже в длинном аксоне. В отличие от этого нейропептиды образуются на рибосомах гранулярного эндоплазматического ретикулума в теле клетки и переносятся к окончаниям аксона с помощью быстрого аксонного транспорта, так что этот путь в длинном аксоне может занять сутки и больше. Нейропептиды образуются из более крупных белков-предшественников в результате их ферментатив-

329

Рис. 19-38. Некоторые нейропептиды,. с указанием ощущений и мотиваций, в возникновении которых они, возможно, участвуют.

ного расщепления. Часто при расщеплении одной молекулы предшественника образуется несколько функционально активных пептидов; в этом случае белок-предшественник называют полипротеином. Синаптические пузырьки, заполненные нейропептидами, можно обычно распознать по их размерам: они крупнее пузырьков, содержащих ацетилхолин, аминокислотные медиаторы или моноамины.

Во многих синапсах нейропептиды секретируются одновременно с непептидным медиатором и действуют совместно, но различным образом. Например, окончания пресинаптического аксона в некоторых вегетативных ганглиях лягушки-быка содержат наряду с ацетилхолином пептид, близкий по строению к люлиберину (фактору, стимулирующему выделение лютеинизирующего гормона). Мембрана постсинаптической клетки содержит рецепторы по меньшей мере трех типов: 1) никотиновые (связанные с каналами) рецепторы для ацетилхолина, опосредующие быстрые сигналы; 2) мускариновые (связанные с G-белком) рецепторы для ацетилхолина, опосредующие более медленные эффекты; 3) рецепторы (вероятно, тоже связанные с G-белком) для пептида, сходного с люлиберином, опосредующие самые медленные эффекты (рис. 19-39, А). Действие люлибериноподобного гормона не только более замедленное по сравнению с ацетилхолином, но и более диффузное, поэтому пептидные молекулы, высвобождаемые в синапсе на какой-либо постсинаптической клетке, вызывают постсинаптические потенциалы и в других близлежащих клетках

(рис. 19-39, Б).

Если (что кажется вероятным) и другие нейропептидные медиаторы обладают сходными свойствами, то нетрудно понять, почему необходимо такое большое число разнообразных нейропептидов. Поскольку пептиды легко диффундируют, места их воздействия не ограничены местами их выделения. Поэтому для того, чтобы пептиды, высвобождаемые из разных, но расположенных по соседству пресинаптических окончаний, воздействовали на разные постсинаптические мишени, пептиды и их рецепторы должны быть химически различными.

19.5.3. Стойкие изменения в поведении связаны с изменениями в специфических синапсах [34]

Эффекты, которые опосредуются рецепторами, не связанными с каналами, отличаются как длительностью, так и замедленным проявлением. Этим во многом определяется особая роль таких эффектов в регуляции поведения: они вызывают стойкое изменение в немедленном ответе нервной системы на приходящие извне сигналы и, вероятно, составляют основу по меньшей мере некоторых форм памяти. Это наиболее нагляд-

330

Рис. 19-39. Ответы на пептидный нейромедиатор.

А. Три составляющие постсинаптического потенциала, возникающего в клетке ганглия лягушки после стимуляции пресинаптического нерва. Из окончания пресинаптического аксона выделяются два нейромедиатора - ацетилхолин и пептид, очень сходный с люлиберином (гормоном, стимулирующим высвобождение лютеинизирующего гормона). Как правило, сложный ПСП представляет собой сумму ответов, опосредуемых рецепторами трех видов - двумя разновидностями ацетилхолиновых рецепторов и одним рецептором для пептида, сходного с люлиберином. Вклад каждой из трех составляющих можно оценить, блокируя с помощью специфических токсинов рецепторы, ответственные за две другие составляющие. Только быстрый возбуждающий ПСП, опосредуемый ацетилхолиновыми рецепторами, связанными с каналами, достаточно велик для того, чтобы вызвать потенциал действия. Две медленные составляющие, опосредуемые, вероятно, рецепторами, не связанными с каналами, изменяют возбудимость клетки, делая ее более восприимчивой к стимуляции, следующей сразу за первоначальным стимулом. Б. Схема эксперимента, проведенного на том же ганглии и демонстрирующего диффузный характер воздействия нейропептида, сходного с люлиберином. Этот пептид выделяется одновременно с ацетилхолином в синапсах, образуемых на одной группе клеток (С-клетках), но диффундирует на расстояние в десятки микрометров и вызывает более поздний медленный ПСП в других клетках (В). (А - по Y.N. Jan et al., Cold Spring Harbor Symp. Quant. Biol., 48, 363-374, 1983.)

но продемонстрировано в опытах на морском брюхоногом моллюске аплизии (Aplysia) (см. рис. 19-49). У этого животного можно проследить связь приобретенных изменений в поведении с определенными нервными цепями и расшифровать молекулярные механизмы, лежащие в основе этих изменений.

Аплизия втягивает жабру в ответ на прикосновение к сифону (рис. 19-40). После многократных прикосновений у животного возникает привыкание и реакция исчезает. По своей биологической функции привыкание сходно с адаптацией, но оно развивается более медленно и, как мы увидим, связано с другим участком нервного пути. Какой-либо резкий раздражитель, например сильный толчок или удар электрическим током, снимает эффект привыкания и, наоборот, повышает чувствительность животного, так что оно теперь особенно энергично реагирует на

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]