Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekuljarnaja Biologija Kletki v3

.pdf
Скачиваний:
27
Добавлен:
10.02.2015
Размер:
24.15 Mб
Скачать

301

Рис. 19-12. Распространение потенциала действия А. Потенциалы, регистрируемые группой внутриклеточных электродов, расположенных вдоль аксона. Б. Конформационные изменения натриевых каналов и токи (показаны красным ютом), обусловливающие распространение сдвига мембранного потенциала. Участок аксона с деполяризованной мембраной выделен цветом.

302

Рис. 19-13. А. Строение миелинизированного аксона. Плазматическая мембрана каждой шванновской клетки концентрическими слоями наматывается на аксон, образуя сегмент миелиновой оболочки длиной около 1 мм. Для большей ясности на рисунке слои миелина прилегают друг к другу не так плотно, как в действительности (см. Г). Б. Схематическое изображение шванновской клетки на ранней стадии образования миелиновой оболочки вокруг аксона во время его развития. Обратите внимание на то, что «наматывание» мембраны шванновской клетки на аксон осуществляется за счет роста внутреннего края (помеченного стрелкой). В. Схематическое изображение олигодендроцита, образующего миелиновые оболочки в центральной нервной системе. Один олигодендроцит миелинизирует несколько разных аксонов. Г. Срез нерва из ноги крысенка (электронная микрофотография). Видны две шванновские клетки: одна только начинает миелинизировать аксон, другая уже полностью сформировала почти зрелую миелиновую оболочку. Д. Олигодендроцит из спинного мозга котенка. Отходящие от него отростки миелинизируют по меньшей мере два аксона. [Г и Д - из С. Raine, in: Myelin (P. Morell, ed.), New York, Plenum, 1976.]

303

19.2.4. Миелинизация повышает скорость и эффективность проведения нервных импульсов у позвоночных [8, 12]

Миелиновую оболочку образуют специализированные глиальные клетки - шванновские клетки в периферической и олигодендроциты в центральной нервной системе. Плазматическая мембрана этих клеток слой за слоем по спирали плотно наматывается на аксон (рис. 19-13). Каждая шванновская клетка миелинизирует один аксон, образуя сегмент оболочки длиной около 1 мм, содержащий до 300 концентрических слоев; олигодендроциты формируют подобные сегменты оболочки одновременно у нескольких аксонов.

Изолирующий слой, образуемый миелиновой оболочкой, резко уменьшает емкость мембраны аксона и одновременно почти полностью предотвращает утечку тока через нее. Между двумя соседними сегментами миелина остается узкий незащищенный участок мембраны (рис. 19-14). Эти так называемые перехваты Ранвье шириной всего лишь около 0,5 мкм являются центрами электрической активности. Почти все натриевые каналы аксона сосредоточены в перехватах, где плотность этих каналов достигает нескольких тысяч на 1 мкм2, тогда как в участках, прикрытых миелиновой оболочкой, их почти вовсе нет. Поэтому изолированные участки мембраны не способны возбуждаться, но обладают превосходными кабельными свойствами - низкой емкостью и высоким сопротивлением для утечки тока. Поэтому токи, связанные с потенциалом действия в области перехвата, эффективно направляются путем пассивного проведения к следующему перехвату, быстро деполяризуют мембрану и возбуждают очередной потенциал действия. Такое проведение называют сальтаторным - сигнал распространяется вдоль аксона, «перескакивая» с одного перехвата на другой. Миелинизация дает два главных преимущества: быстрее распространяется потенциал действия и сберегается метаболическая энергия, так как активное возбуждение происходит лишь на небольших участках в перехватах Ранвье.

Рис. 19-14. Продольный срез аксона из периферического нерва [ (электронная микрофотография). Виден перехват Ранвье, где остается открытым небольшой участок плазматической мембраны аксона между двумя соседними сегментами миелиновой оболочки. (С любезного разрешения Richard Bunge.)

304

Заключение

Передача электрических сигналов нервной клеткой основана на изменении мембранного потенциала в результате прохождения небольших количеств ионов через управляемые ионные каналы. Эти ионы перемещаются за счет энергии, большой запас которой создается благодаря работе натриево-калиевого насоса, поддерживающего высокие градиенты концентрации Na+ и К+ на мембране нервной клетки. В состоянии покоя мембрана нейрона благодаря каналам утечки К+ более проницаема дм калия, чем для других ионов, и поэтому мембранный потенциал близок к равновесному калиевому потенциалу, составляющему примерно - 70 мВ. Потенциал действия возникает тогда, когда под влиянием короткого деполяризующего стимула открываются потенциал-зависимые натриевые каналы, так что мембрана становится более проницаемой для Na+ а мембранный потенциал еще дальше смещается в сторону равновесного натриевого потенциала. Благодаря такой положительной обратной связи открывается еще больше натриевых каналов, что в конечном итоге приводит к возникновению потенциала действия, подчиняющегося закону «всё или ничего». На каждом данном участке мембраны потенциал действия быстро исчезает вследствие инактивации натриевых каналов, а во многих нейронах также вследствие открытия потенциал-зависимых калиевых каналов.

Распространение потенциала действия (импульса) вдоль нервного волокна определяется кабельными свойствами этого волокна. При локальной деполяризации мембраны и возникновении потенциала действия ток, проходящий через открытые натриевые каналы, пассивно распространяется и деполяризует соседние участки мембраны, где в свою очередь возникает потенциал действия. Во многих аксонах позвоночных высокая скорость и эффективность проведения импульсов достигается благодаря изоляции поверхности аксона миелиновой оболочкой, изменяющей кабельные свойства аксона и оставляющей открытыми лишь небольшие участки возбудимой мембраны.

19.3. Лиганд-зависимые ионные каналы и быстрая синаптическая передача [13]

Самый простой способ передачи сигнала от нейрона к нейрону - это прямое электрическое сопряжение через щелевые контакты. Главное преимущество таких электрических синапсов состоит в том, что сигналы передаются без задержки. С другой стороны, эти синапсы гораздо меньше приспособлены для регулирования и адаптации, чем химические синапсы, с помощью которых осуществляется большинство связей между нейронами. Электрическая связь через щелевые контакты была рассмотрена в гл. 14 (разд. 14.1.5-14.1.8), здесь же речь пойдет только о химических синапсах.

Химическая передача в синапсах основана на тех же принципах, что и химическая сигнализация с помощью водорастворимых гормонов (гл. 12). И в том и в другом случае клетка высвобождает вещество-посредник, которое воздействует на другую клетку или группу клеток, связываясь с мембранными белками-рецепторами. Однако в отличие от гормона химический посредник в синапсе - нейромедиатор - воздействует лишь на очень малых расстояниях.

В результате электрической стимуляции пресинаптическая клетка высвобождает путем экзоцитоза нейромедиатор (см. рис. 19-4). После того как нейромедиатор пересекает щель между пре- и постсинаптической клетками шириной обычно в долю микрометра, химический сигнал должен быть снова преобразован в электрический. Это преобразование осуществляют рецепторы, находящиеся в плазматической мембране

305

постсинаптической клетки. Бывают рецепторы двух типов - связанные с каналами и не связанные с каналами (рис. 19-15). Рецепторы, связанные с каналами, - это фактически лиганд-зависимые каналы. Конформация таких рецепторов сразу же после связывания нейромедиатора изменяется таким образом, что в мембране образуется открытый канал для определенных ионов и в результате проницаемость мембраны изменяется. Рецепторы этого типа служат основой самого обычного и наиболее изученного способа передачи сигналов в химических синапсах, при котором передача осуществляется очень быстро.

Рецепторы, не связанные с каналами, запускают такие же процессы, что и при воздействии водорастворимых гормонов и локальных химических медиаторов повсюду в организме (разд. 12.3). В таких рецепторах участки связывания нейромедиатора функционально сопряжены с ферментом, который в присутствии нейромедиатора обычно катализирует образование внутриклеточного посредника, например сАМР. В свою очередь этот посредник вызывает изменения в постсинаптической клетке, в том числе модификацию ионных каналов в клеточной мембране. В отличие от рецепторов, связанных с каналами, эти рецепторы, как правило, опосредуют относительно замедленные, но более продолжительные эффекты нейромедиаторов. Полагают, что активация таких рецепторов вызывает в нейронах изменения, которые сохраняются длительное время и лежат в основе научения и памяти (разд. 19.5.3).

В этом разделе будет рассмотрена быстрая синаптическая передача, использующая лиганд-зависимые ионные каналы. Специфические особенности синаптической передачи с участием рецепторов, не связанных с каналами, и роль таких рецепторов в долговременных синаптических изменениях будут обсуждаться в разд. 19.5.

19.3.1. Нервно-мышечное соединение - наиболее изученный синапс [14]

Плотность расположения нейронов в мозгу настолько высока, что экспериментировать на отдельных мозговых синапсах чрезвычайно трудно. Поэтому функции синапса были детально изучены главным образом на соединениях между нервом и скелетной мышцей лягушки и, в меньшей степени, на синапсах между гигантскими нейронами кальмара и других моллюсков.

Скелетные мышечные волокна позвоночных, подобно нервным клеткам, способны возбуждаться под действием электрического тока, и поэтому нервно-мышечное соединение (рис. 19-16) оказалось хорошей моделью химического синапса вообще. Двигательный нерв и иннервируемую им мышцу можно отделить от окружающей ткани и поддерживать в функционально активном состоянии в питательной среде определенного состава. Стимулируя нерв через наружные электроды, можно с помощью внутриклеточного микроэлектрода регистрировать ответ одиночной мышечной клетки (рис. 19-17). На рис. 19-18 сравнивается тонкая структура нервно-мышечного соединения и типичного синапса между двумя нейронами центральной нервной системы.

Нервно-мышечное соединение было главным объектом ряда продолжительных и плодотворных исследований, начатых в 50-х годах нашего века. Основой для первых экспериментов послужило открытие в начале 20-х годов того факта, что ацетилхолин, выделяемый при стимуляции блуждающего нерва, воздействует на сердце, замедляя его сокращения. Это явилось первым несомненным доказательством химической природы нервно-мышечной передачи, а вскоре после этого, в 30-х годах, было показано, что стимуляция двигательного нерва, иннервирующего скелетную мышцу, тоже приводит к высвобождению ацетилхолина, а ацетил-

Рис. 19-15. Воздействие нейромедиатора на постсинаптическую клетку может осуществляться при посредстве рецепторных белков двух фундаментально различных типов: рецепторов, связанных с каналами, и рецепторов, не связанных с каналами. Связанные с каналами рецепторы называют также лиганд-зависимыми каналами.

306

Рис. 19-16. Нервно-мышечное соединение у лягушки. А. Окончание одного аксона на клетке скелетной мышцы при малом увеличении. Электронная микрофотография, полученная с помощью сканирующего электронного микроскопа. Б. Схематическое изображение участка, помеченного на рисунке А красным прямоугольником. Показаны основные детали, видимые в трансмиссионный электронный микроскоп. Характер ветвления небольших окончаний аксона в области синапса варьирует в зависимости от вида животного и типа мышечного волокна. Из-за своеобразной формы окончаний аксона у млекопитающих нервно-мышечное соединение часто называют концевой пластинкой. (A-J. Desaki, Y. Uehara, J. Neurocytol, 10, 101-110, 1981, с разрешения Chapman & Hall.)

холин в свою очередь заставляет скелетную мышцу сокращаться. Таким образом, ацетилхолин был идентифицирован как нейромедиатор в нервномышечном соединении. Но как же происходит высвобождение ацетилхолина и как он воздействует на мышцу?

19.3.2. За сопряжение потенциалов действия с высвобождением медиатора ответственны потенциал-зависимые кальциевые каналы [15]

В результате открытия и закрытия натриевых каналов нервный импульс распространяется вдоль аксона, пока не достигнет места контакта с мышечной клеткой. Здесь под его воздействием открываются потенциал-зависимые каналы, находящиеся в плазматической мембране окончания аксона, и ионы Са2 + входят в аксон, в результате чего выделяется; ацетилхолин (рис. 19-19).

Как показали три простых наблюдения, для синаптической передачи необходим приток ионов кальция в окончание аксона. Во-первых, если в момент прибытия нервного импульса во внеклеточной среде вокруг окончания аксона эти ионы отсутствуют, то медиатор не высвобождается и передачи сигнала не происходит. Во-вторых, если через микропипетку искусственно ввести Са2+ в цитоплазму нервного окончания, выход нейромедиатора происходит тотчас даже без электрической стимуляции аксона (это трудно осуществить на нервно-мышечном соединении из-за малых размеров окончания аксона, поэтому такой эксперимент был проведен на синапсе между гигантскими нейронами кальмара) В-третьих, искусственная деполяризация окончания аксона (тоже в синапсе между гигантскими нейронами) без нервного импульса и в условиях блокады натриевых и калиевых каналов специфическими токсинами

Рис. 19-17. Схема постановки эксперимента для изучения синаптической передачи в нервно-мышечном соединении.

307

Рис. 19-18. А. Электронная микрофотография части нервно-мышечного соединения. Б. Электронная микрофотография небольшого участка мозга крысы. Здесь хорошо юны два синапса, где можно различить пре- и постсинаптические мембраны, синаптическую щель между ними и синаптические пузырьки в окончаниях аксонов, как 1 на фото А. Эти два синапса, показанные на фото Б, различаются величиной и формой синаптических пузырьков: в синапсе типа I пузырьки круглые, тогда как в синапсе типа II они уплощенные и, как полагают, содержат другой медиатор. Обратите внимание на характерное утолщение как постсинаптической, так (в меньшей степени) и пресинаптической мембраны; оно видно на обоих снимках. В мозговых синапсах между пре- и постсинаптическими мембранами нет базальной мембраны, хотя и здесь можно заметить некоторое количество внеклеточного материала. Отсутствие базальной мембраны - это главная структурная особенность, отличающая синапсы центральной нервной системы от нервно-мышечных соединений. (С любезного разрешения John Heuser (A) и i. Campbell, A. R. Lieberman

(Б).)

вызывает переход Са2 + внутрь окончания и высвобождение нейромедиатора. Но если деполяризация вызывает такой сдвиг мембранного потенциала, что электрохимическая сила, заставляющая Са2 + входить внутрь, уменьшается до нуля, то высвобождения нейромедиатора не происходит.

Белок, образующий канал для перехода Са2+ в клетку, - потенциал-зависимый кальциевый канал - играет исключительно важную роль. Он обеспечивает единственный известный способ преобразования электри-

308

Рис. 19-19. Важнейшие события, происходящие в химическом синапсе после прибытия импульса в окончание аксона.

ческих сигналов - кратковременных деполяризаций мембраны - в химические изменения внутри нейрона. Как видно из пояснений на схеме 19-1, потенциал-зависимые каналы для Na + , K+ или С1- с этой целью использоваться не могут: в результате одиночного нервного импульса через эти каналы проходят настолько малые ионные токи, что они лишь незначительно изменяют концентрацию ионов в цитозоле. Сам по себе поток ионов через кальциевые каналы тоже невелик, и обычно его вклад в электрический ток через мембрану мал. Но этот поток имеет весьма значительную величину относительно внутриклеточной концентрации свободного кальция, которая в норме поддерживается на уровне около 10 -7 М, что соответствует менее 100 ионам Са2+ в мкм3. Благодаря мембранному потенциалу и сравнительно высокой внеклеточной концентрации кальция (обычно ~1-2 мМ) через один открытый кальциевый канал проходит несколько сотен ионов Са2+ за 1 мс. Таким образом, когда в пресинаптическом окончании под влиянием нервного импульса открывается небольшое число потенциал-зависимых кальциевых каналов, внутриклеточная концентрация свободного кальция легко может повыситься в 10-100 раз. Поступающие свободные ионы Са2+ действуют как внутриклеточные посредники и вызывают выделение нейромедиатора со скоростью, резко возрастающей по мере повышения концентрации Са2+.

Концентрация свободных ионов кальция возрастает лишь на короткое время, так как Са2 +-связывающие белки, Са2 + -изолирующие пузырьки и митохондрии быстро поглощают ионы Са2 + , перешедшие в окончание аксона, а находящиеся в плазматической мембране кальциевые насосы, использующие энергию гидролиза АТР или натриевого электрохимического градиента, откачивают ионы кальция из клетки (см. разд. 6.4.7 и 12.3.7). Благодаря этому окончание аксона способно передать следующий сигнал сразу же, как только по аксону сможет прийти следующий нервный импульс.

19.3.3. Нейромедиатор быстро высвобождается путем экзоцитоза [16]

Окончание аксона в нервно-мышечном соединении заполнено тысячами одинаковых (~40 нм в диаметре) секреторных пузырьков, называемых синаптическими пузырьками, каждый из которых содержит ацетилхолин (см. рис. 19-18). Входящий в клетку кальций вызывает волну экзоцитоза, при котором пузырьки сливаются с пресинаптической мембраной, их содержимое выводится в синаптическую щель и воздействует на постсинаптическую клетку. Экзоцитоз происходит лишь в определенных участках, называемых активными зонами, которые расположены прямо на-

309

против рецепторов постсинаптической клетки; благодаря этому задержка в передаче сигнала, связанная с диффузией нейромедиатора через синаптическую щель, становится пренебрежимо малой. Впоследствии мембраны «разрядившихся» синаптических пузырьков извлекаются из пресинаптической плазматической мембраны путем эндоцитоза.

Имеются данные о том, что входящие в окончание аксона ионы Са2 + не только запускают экзоцитоз, но и активируют Са2 + - кальмодулин-зависимую протеинкиназу (Са-киназу II - см. разд. 12.4.3), фосфорилирующую в окончании аксона многие белки, в том числе синапсин /-белок, прикрепленный к поверхности синаптических пузырьков. Как полагают, в результате фосфорилирования синапсин I освобождается, благодаря чему пузырьки переходят в активную зону пресинаптической мембраны, где занимают место пузырьков, исчезнувших в результате экзоцитоза. Весь цикл событий, запускаемый одиночным нервным импульсом, был наглядно продемонстрирован путем очень быстрого замораживания области синапса и исследования препаратов в электронном микроскопе. Некоторые результаты представлены на рис. 19-20.

19.3.4. Нейромедиатор высвобождается «квантами» случайным образом [17]

Под действием одного нервного импульса из окончания аксона в нервно-мышечном соединении обычно высвобождается лишь несколько сотен из многих тысяч находящихся там синаптических пузырьков. Каждый пузырек, выбрасывая свое содержимое в синаптическую щель, вносит свой вклад в изменение мембранного потенциала постсинаптической мышечной клетки, и это можно регистрировать в помощью внутриклеточного электрода (рис. 19-21). Таким образом мембрана мышечной клетки деполяризуется до пороговой величины и генерирует потенциал действия. Это возбуждение распространяется по всей клетке (рис. 19-22), вызывая ее сокращение, как это описано в разд. 11.1.11.

Даже тогда, когда в окончание аксона не поступают импульсы, вблизи синапса наблюдаются случайные кратковременные сдвиги потенциала мышечной мембраны в сторону деполяризации. Эти так называемые миниатюрные синаптические потенциалы имеют примерно одинаковую амплитуду всего лишь около 1 мВ, что намного ниже порогового уровня. Возникают такие потенциалы случайным образом с достаточно низкой вероятностью, в среднем приблизительно раз в секунду (рис. 19-23). Каждый миниатюрный потенциал - это результат слияния одного синаптического пузырька с пресинаптической мембраной, т. е. результат выброса содержимого одного пузырька. Амплитуда, регистрируемая для данной мышечной клетки, более или менее постоянна, так как пузырьки содержат примерно одинаковое число молекул ацетилхолина - около 5000. Это минимальная порция, или «квант», выделяемого медиатора. Сигналам большей силы соответствуют величины, кратные этой основной единице. Ионы кальция, входящие в окончание аксона во время потенциала действия, повышают за доли миллисекунды частоту опорожнения пузырьков более чем в 10000 раз по сравнению с частотой спонтанного опорожнения в покоящемся окончании. Тем не менее процесс остается вероятностным, единичная стимуляция нерва не всегда производит в точности одинаковый постсинаптический эффект: если в среднем высвобождается 300 квантов медиатора, то в каждом отдельном случае число их может быть несколько большим или меньшим.

310

Рис. 19-20. Цикл событий, происходящих на мембране аксонного окончания в нервно-мышечном синапсе после стимуляции. Для того чтобы проследить за цепью событий, образцы ткани подвергали быстрому замораживанию через разные промежутки времени. Для упрощения задачи стимуляция осуществлялась в условиях, специально измененных таким образом, чтобы протекание всего процесса замедлялось в 5 10 раз, а число пузырьков, подвергающихся экзоцитозу, возрастало. А. Схематическое изображение нервно-мышечного соединения; показаны активные зоны, где происходит выделение нейромедиатора. Б. Область, обведенная рамкой на рисунке А, в увеличенном виде; схематически показаны события, происходящие в этой области через разные промежутки времени после стимуляции нерва.

В- 3. Мембрана, как она выглядит под электронным микроскопом (фото любезно предоставил John Heuser). Слева представлены электронные микрофотографии препаратов пресинаптической мембраны (со стороны цитоплазмы), полученных методом замораживания скалывания; справа микрофотографии тонких срезов. В и Е-состояние покоя. Г и Ж- слияние синаптических пузырьков с плазматической мембраной в активной зоне (отмечены рядами частиц, включенных в мембрану). Д и 3-возвращение мембран синаптических пузырьков через окаймленные ямки и окаймленные пузырьки. Как можно видеть, синаптические пузырьки начинают сливаться с плазматической мембраной через 5 мс после стимуляции (Г, Ж); каждая «пора» в плазматической мембране, видимая на фотографии Г, - результат слияния одного синаптического пузырька. Еще через 2 мс слияние завершается. Первые признаки восстановления мембраны становятся заметны примерно через 10 с, когда образуются окаймленные ямки (см. разд. 6.5.4), а затем еще через 10 с эти ямки начинают отшнуровываться с образованием окаймленных пузырьков (Д, 3). Эти пузырьки включают первоначальные мембранные белки синаптических пузырьков, а также молекулы, захваченные из внешней среды. Цикл заканчивается отделением от пузырьков окаймляющего их материала, заполнением их ацетилхолином и образованием обычных синаптических пузырьков с гладкой поверхностью. Эта схема, вероятно, позволяет объяснить удивительную однородность синаптических пузырьков по величине; их объем определяется размерами окаймлявшей их оболочки из клатрина (см. разд. 6.5.5).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]