
Шпора по физике [1 семестр]4
.doc
Билет №48 Вопрос 1 Преобразования Лоренца. Постулаты СТО. Уравнения Максвелла не инвариантны относительно законов Галилея. Т.е. в разных системах отсчета согласно преобразованиям Галилея законы электродинамики должны были бы описываться различными уравнениями. => Либо Максвелл не прав, либо Галилей не точен.
Если вместо
преобразований Галилея использовать
преобразования Лоренца, то инвариантность
законов природы выполняется как для
механики, так и для электродинамики
Из приведенных
выражений видно, что при
Наблюдателю в
системе S
будет казаться, что все предметы в
системе S`
сокращаются в направлении
движения.Следствие:
Расстояние между точками относительно.
В соответствии с принципом относительности
системы S
и S`
равноправны, поэтому наблюдателю
находящемуся в системе S`
также будет казаться, что все предметы
в системе S
сжимаются => расстояние между точками
относительно.Удлинение
промежутков времени.Пусть
в системе S
с координатой x0
произошло 2 события t1
и t2
(t1-включили
прожектор, t2-выключили).
Dt=t2
–
t1Наблюдатель
в системе S`
измеряя этот промежуток времени по
своим часам, получит величину:
Наблюдателю в системе S` будет казаться, что движущиеся относительно него в системе S процессы замедляются. Наименьшее значение имеет промежуток времени в той системе отсчета, в которой события происходят и относительно которой часы находятся в покое. Это время называют собственным. Следствие: Относительность понятий одновременности. Релятивистская динамика Сложение скоростей.Преобразования Лоренца позволяют получить:
Вопрос 2 Удельной теплоемкостью называется количество теплоты, которое необходимо сообщить систем, чтобы нагреть единицу массы на 1 градус:
Молярной теплоемкостью называют количество теплоты которое необходимо сообщить системе, чтобы нагрет 1 моль на 1 градус
Найдем Cm идеального газа
1)
2)
|
Билет №49 Вопрос 1 Сложение колебаний с близкими частотами. Биения. Пусть есть 2 колебания: x1=A1cos(ω1t+φ01) x2=A1cos(ω2t+φ02) ω2=ω1+Δω
Δω – очень мало
При сложении таких колебаний вектор A2 будет “убегать” от вектора A1, при этом cosΔφ(t) будет в [-1,1], поэтому амплитуда будет меняться в интервале Amin=|A1-A2| Amax=|A1+A2| Такие колебания называются биения.
Вопрос 2 Круговые процессы являются основой всех тепловых машин. кот бывают 2-х типов 1)Реализующие прямой цикл Q=A>0, т.е. теплоà мех. раб.
Общая схема всех тепловых двигателей:
Идеальная тепловая машина Карно.
В ее основе лежит круговой процесс который называется циклом Карно 1 2-3: Q=0 – Адиабатическое расширение; 3-4: A2=Q2<0 – Изотермическое сжатие; 4-1: Q=0 Адиабатическое сжатие. Для замкнутых циклов работа совершаемая газом в цикле Карно равна подводимому теплу. Тепловая машина реализующая этот цикл имеет максимальный КПД по сравнению с любым другим циклом. h=(T1-T2)/T1; Для повышения КПД тепловых машин Необходимо увеличивать температуру нагревателя и уменьшать температуру холодильника. КПД любой реальной тепловой всегда меньше, чем у машины Карно:
|
Билет №50 Вопрос 1 Динамика частиц. 1-й закон Ньютона. Динамика – раздел механики, в котором изучаются причины возникновения или изменения в движении тел. В основе лежат 3 закона Ньютона.
1 Все инерциальные системы отсчета движутся друг относительно друга равномерно и прямолинейно. Системы отсчета, в которых тела движутся с ускорением, называются неинерциальными.
Силы. 2-й закон Ньютона.
2-й закон Ньютона: Ускорение, которое приобретает тело прямо пропорционально результирующей всех сил, действующих на тело и обратно пропорционально массе.
Силой называется векторная физическая величина, которая характеризует действие одного тела на другое.
F=qυBsinα
Импульсная форма 2-го закона Ньютона.
Действие силы в
течении Dt
приводит к изменению импульса тела.
Если F-const
3-й закон Ньютона (Закон взаимодействия тел).
3
С
Вопрос 2 Распределение Больцмана. Распределение Больцмана – распределение частиц в потенциальном поле. Барометрическая формула является частным случаем распределения частиц в потенциальном поле. Преобразуем его используя уравнение Менделеева-Клапейрона в виде: p=nkT
Анализ: 1)Tà ∞, следовательно WП/kTà 0, n=n0 2)Tà 0, след. WП/kTà ∞, nà 0, Все молекулы падают на землю. Барометрическая формула. Распределение молекул в поле силы тяжести является неравномерным. В жидкостях давление на различных глубинах различно в следствии гидростатического давления.
Для газов это соотношение может быть записано только для малых толщин:
|
Билет 51 1. Стоячие волны (их уравнение, условия пучностей и узлов). Стоячая волна энергии не переносит. Стоячие волны образуюся в результате интерференции (наложения) 2х одинаковых, противоположных по направлению волн. Энергия, переносимая волной количественно характеризуется вектором плотности потока энергии, вектором Умова. y = A sin (wt + φ0) s(t,x)=Acos[ (t–x/c)]–Acos[ (t+x/c)]=2Asin[ x/c]sin t В каждой точке порисходит гармоническое колебание с частотой , причём амплитуда зависит от положения точки по закону: А(х)=2А|sin[x/c]|
2
Круговым процессом или циклом называется такой в результате которого термодинамическая система возвращается в исходное сост. Из рисунка видно что работа
Важное значение круговых процессах является то, что система возвращается в исходное состояние, Следовательно U=0, Q=A т.е. Работа совершается за счет подводимой теплоты. Круговые процессы являются основой всех тепловых машин. кот бывают 2-х типов 1)Реализующие прямой цикл Q=A>0, т.е. тепло мех. раб. 2)Реализующие обратный цикл Q=A<0, т.е. мех. раб. тепло
О
§14.5 Идеальная тепловая машина Карно.
В 1-2: A1=Q1>0 – Изотерм. расширение 2-3: Q=0 – Адиабатическое расширение; 3-4: A2=Q2<0 – Изотермическое сжатие; 4-1: Q=0 Адиабатическое сжатие. Для замкнутых циклов работа совершаемая газом в цикле Карно равна подводимому теплу. Тепловая машина реализующая этот цикл имеет максимальный КПД по сравнению с любым другим циклом. =(T1-T2)/T1; Для повышения КПД тепловых машин Необходимо увеличивать температуру нагревателя и уменьшать температуру холодильника. КПД любой реальной тепловой всегда меньше, чем у машины Карно:
|
Билет 52 1. Волна. Длина волны, волновое число, волновой вектор. Уравнение бегущей волны. Волновое уравнение. Эффект Доплера. Процесс распространения колебаний в сплошной среде называется волновым процессом или волной.
Бегущие волны –
волны переносящие энергию. Уравнение
бегущей волны – функция, показывающая
положение частиц от времени. S(x,t)
S(t)=Acos(t)
В некотором направлении X, при скорости волны V, колебания точки на расстоянии x будут запаздывать на Δt. Поэтому смещение будет равно: S(x,t)=Acos(ω(t–Δt))=Acos(ω(t–x/V)) Расстояние, которое проходит волна за один период, называют длинной волны. Волновой
вектор–
вектор, направление которого совпадает
с направлением движения волны.:
Эффект Доплера . Движение источника звука , сопровождающееся изменением расстояния от источника до приёмника ,приводит к изменению частоты принимаемого звука. Это связано с тем, что скорость распространения звуковой волны в среде не зависит от скорости движения источника. Поэтому , если источник звука движется от приёмника со скоростью v см/сек, то за единицу времени мимо приёмника пройдут не все максимумы, а только часть их: приёмник отметит меньшее число колебаний, чем создаёт источник. Убедиться в этом можно при помощи элементарного расчёта. Пусть источник в начале секунды находился на расстоянии с см от приёмника, с см/сек –скорость звука в среде, тогда через секунду он будет находится на расстоянии с+v см на этом расстоянии уложатся все f максимумов которые за 1 сек созданы излучателем (f-частота) , но за 1 секунду до приёмника дойдут не все максимумы, а часть на расстоянии с см f’=f/(1+v/c) –частота полученная приёмником ,если приёмник приближается то f’=f/(1-v/c); если же вдижется приёмник, а не источник ,то если приёмник движется к источнику со скоростью v то за 1 сек он пройдёт не f , а f ‘’ максимумов, где f’’=f(1+v/c) если удаляется то f‘’=f(1-v/c);
2. Второй закон термодинамики в различных формулировках. Энтропия. Термодинамическая вероятность. Второй закон термодинамики. Невозможен процесс результатом которого является превращение всей теплоты полученной от нагревателя в эквивалентную механическую работу. Другими словами этот закон эквивалентен утверждению о невозможности вечного двигателя 2-го рода. Схема вечного двигателя 2 рода:
Следствие: 1)2-й закон Термодинамики запрещает использовать энергию системы находящейся в термодинамическом равновесии.
2 U=F+TS Свободная энергия та часть внутренней энергии, которая может быть преобразована в механическую энергию. (TS) - связанная энергия – это та часть, которая не может быть преобразована в механическую энергию. Энтропия – является функцией состояния. Ее изменение связано с получением и отдачей теплоты. Элементарное изменение энтропии при заданной температуре определяется соотношением. Можно показать, что любой процесс приводит к возрастанию энтропии S>=0. Если термодинамическая система не является замкнутой т.е. имеется внешнее воздействие, то энтропия может и убывать. Найдем изменение энтропии в процессах связанных с идеальным газом.
При
При
При
Энтропия системы тел равна сумме энтропий каждого из них.
Пример:
Найти
Физический смысл энтропии был раскрыт Больцманом, который связал энтропию с термодинамической вероятностью w,
Пример: спичечный коробок 1.(Спички в коробке) Основным законом является закон возрастания энтропии. Энтропия при этом выступает как мера упорядоченности системы. (Чем меньше энтропия, тем больше порядок) Возрастание энтропии приводит к разупорядочиванию любой системы. Пример: спичечный коробок 2.(Коробок спичек высыпали на стол) Следствие: все самопроизвольные процессы в природе происходят таким образом, что энтропия возрастает. Происходят процессы от упорядочивания к беспорядку. Тем не менее возможны процессы, когда энтропия уменьшается. Однако при этом необходимо совершить работу. Т.е. такой процесс требует затрат энергии. Пример: спичечный коробок 3.(Спички собрали в коробок)
|
|