Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ.doc
Скачиваний:
3
Добавлен:
22.11.2019
Размер:
2.05 Mб
Скачать

Вариант № 13 – Шауберт Дмитрий

1. Найти разложение вектора по векторам:

.

2. Проверить, коллинеарны ли векторы , если

.

3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 1, 2), A2(–1, 1, 3), A3(2, –2, 4),

A4 (–1, 0, –2). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

8. Найти модуль вектора , если .

9. Задан вектор силы и координаты точек: т. A (–2, 0, –1) и т. B (2, 2, 1).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

10. Вычислить проекции вектора на оси координат, если A (3, 3, –1),

B (1, 5, –2), C (4, 1, 1).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 14 – Шпетная Татьяна

1. Найти разложение вектора по векторам:

.

2. Проверить, коллинеарны ли векторы , если

.

3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(2, 3, 1), A2(4, 1, –2), A3(6, 3, 7),

A4 (7, 5, –3). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

8. Найти модуль вектора , если .

9. Задан вектор силы и координаты точек: т. A (1, 0, 1) и т. B (2, –6, 8).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

10. Вычислить проекции вектора на оси координат, если A (–1, –2, 1),

B (–4, –2, 5), C (–8, –2, 2).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ