
- •Глава 1. Основные термины и понятия метрологии
- •1.1. Физические свойства, величины
- •1.3. Международная система единиц (система си)
- •Глава 2. Основы техники измерений параметров технических систем
- •2.1. Модель измерения и основные постулаты метрологии
- •2.2. Виды и метолы измерений
- •2.3. Погрешности измерений
- •2.6. Оценка неисключенной составляющей систематической погрешности измерений
- •2.11. Суммирование погрешностей
- •Глава 3. Нормирование метрологических характеристик средств измерений
- •3.3. Классы точности средств измерений
- •Глава 4. Метрологическая надежность средств измерений
- •4.1. Основные понятия теории метрологической надежности
- •4.2. Изменение метрологических характеристик си в процессе эксплуатации
- •4.3. Математические модели изменения во времени погрешности средств измерений
- •4.3.1. Линейная модель изменения погрешности
- •4.3.2. Экспоненциальная модель изменения погрешности
- •4.4. Метрологическая надежность и межповерочные интервалы
- •Глава 5. Средства и методы измерений
- •5.1. Элементарные средства измерений
- •5.2. Измерительные приборы и установки
- •5.3.Метрологические характеристики средств измерений и их нормирование
- •5.4. Классы точности средств измерений
- •5.5. Выбор средств измерений
- •Глава 6. Методы и средства измерений, применяемые в строительстве
- •6.1. Измерение механических характеристик материалов
- •6.3. Особенности поверки средств измерения силы
- •6.4. Неразрушающие методы контроля прочности бетона
- •6.5. Линейно-угловые измерения
- •Глава 7. Принципы метрологического обеспечения
- •7.1. Основы метрологического обеспечения
- •7.2. Нормативно-правовые основы метрологии
- •7.4.3. Поверка средств измерений
- •7.7. Анализ состояния измерений
5.3.Метрологические характеристики средств измерений и их нормирование
Характеристики свойств средств измерений, оказывающих влияние на результаты измерений и возникающие при этом погрешности, называются метрологическими характеристиками средств измерений.
Характеристики, указанные в нормативно-технической документации, называются нормированными, а определяемые экспериментально в ходе измерений — действительными.
Нормирование метрологических характеристик позволяет выбирать оптимальные измерительные средства для конкретных условий, формировать измерительные системы из отдельных измерительных средств, имеющих согласованные характеристики, и правильно оценивать погрешности в реальных условиях выполнения измерений.
Правила выбора и способы нормирования метрологических характеристик установлены ГОСТ 8.009 — 84 «ГСИ. Нормируемые метрологические характеристики средств измерений» и рядом методических документов.
Для правильного выбора измерительного средства необходимы не только характеристики систематической и случайной составляющих основной погрешности, но и другие характеристики: цена деления прибора, функция преобразования, динамические характеристики и характеристики чувствительности измерительного средства к влияющим факторам.
Для удобства метрологические характеристики объединены в комплексы, каждый из которых подходит для определенной группы средств измерений.
По этому принципу все средства измерений разделены на три большие группы:
• меры и цифроаналоговые преобразователи;
• измерительные и регистрирующие приборы;
• аналоговые и аналого-цифровые измерительные преобразователи.
Одной из главных задач нормирования метрологических характеристик, безусловно, является обеспечение возможностей правильной оценки погрешностей в процессе эксплуатации измерительных средств.
Нормирование метрологических характеристик базируется на специальных исследованиях, учитывающих технический уровень производств, выпускающих измерительные средства.
На основании нормированных характеристик рассчитываются основная и дополнительная погрешности, затем погрешности, обусловленные взаимодействием измерительного средства с объектом измерений, и, наконец, оценивается интервал, в котором с до верительной вероятностью находится суммарная инструментальная погрешность средства измерений.
В нормативно-технической документации приводятся номинальные метрологические характеристики для определенной совокупности средств измерений, имеющих одинаковое назначение и конструкцию.
Характеристики отдельного средства измерений из данной совокупности должны находиться в области значений, указанных в нормативно-технической документации. Определение метрологических характеристик отдельного средства измерения и проверка его соответствия номинальным значениям осуществляются в ходе поверочных работ.
5.4. Классы точности средств измерений
Учет всего комплекса метрологических характеристик необходим только при измерениях высокой точности, а также при проектировании сложных измерительных систем. В большинстве производственных отраслей, в том числе в строительстве, используют рабочие средства измерений, метрологические характеристики которых нормированы на основе классов точности.
Класс точности — обобщенная характеристика средств измерений определенного типа, позволяющая судить о том, в каком диапазоне находится суммарная погрешность измерений. Совокупность метрологических характеристик, определяющих класс точности, отражается в стандартах или технических условиях. Общие требования при делении средств измерений на классы точности приведены в ГОСТ 8.401 — 80 «Классы точности средств измерений. Общие требования».
Средствам измерений с несколькими диапазонами измерений одной и той же физической величины или предназначенным для измерений разных физических величин могут быть присвоены различные классы точности для каждого диапазона или каждой измеряемой величины.
Обозначения классов точности наносятся на циферблаты, щитки и корпуса средств измерений. При этом в эксплуатационной документации на средства измерений, содержащей обозначение класса точности, должна быть ссылка на стандарт или технические условия, в которых установлен класс точности для этого типа средств измерений.
Обозначения могут иметь форму заглавных букв латинского алфавита или римских цифр с добавлением условных знаков. Смысл таких обозначений раскрывается в нормативно-технической документации. Если же класс точности обозначается арабскими цифрами с добавлением какого-либо знака, то эти цифры непосредственно оценивают погрешность измерения.
Для выражения допускаемых основных погрешностей при их нормировании и оценке используют различные способы, в зависимости от того, какой из них наиболее соответствует характеру средства измерений. Например, для гирь, штангенинструмента, концевых мер длины указывают значения абсолютных допускаемых погрешностей Δ. При этом класс точности обозначается одной арабской цифрой (порядковым номером): 0; 1; 2. Наименьшие погрешности соответствуют классу 0. Значения этих погрешностей для разных номинальных значений мер указаны в таблицах стандартов.
Если нормируется допустимая относительная погрешность 5,
то класс точности обозначается в виде (1.0), где 1,0 — значение допустимой предельной относительной погрешности в процентах от измеренного значения. Например, если при выполнении измерения прибором, имеющим на щитке обозначение (1.5), получен результат 200, то абсолютная погрешность Δ не превышает значения 200 • 0,015 = 3 и измеренное значение находится в интервале 200 ±3. Для многих приборов, например вольтметров, амперметров, нормируют значение приведенной погрешности γ, измеряемой в процентах:
у = (Δ / xN )100,
где xN — нормирующее значение, в качестве которого принимается, как правило, значение верхнего предела измерений.
Класс точности при этом обозначается числом из того же ряда, что и при нормировании относительной погрешности, но дополнительного значка при этом нет. Например, если вольтметр класса 1,5 с диапазоном измерений от 0 до 250 В показывает напряжение 36 В, то абсолютная погрешность измерения, В, составит: Δ = 250 • 0,015 = 3,75, а относительная погрешность измерения, %, составит: δ = 3,75 : 36 • 100 = 10. Для приборов с нормируемой приведенной погрешностью абсолютная погрешность не зависит от значения измеряемой величины, а относительная погрешность увеличивается с уменьшением значения измеряемой величины. Значение абсолютной погрешности можно снизить, если использовать прибор того же класса точности, но с меньшим диапазоном измерений.
Шкалы некоторых приборов градуируют в миллиметрах, абсолютная погрешность при этом выражается также в единицах длины. Если для такого прибора нормируется значение приведенной погрешности, то класс точности прибора обозначается в виде 1.0), где 1,0 — значение приведенной погрешности, выраженное в процентах.