- •Содержание
- •Лекция 1. Принципы управления
- •1.1. Общие понятия
- •1.2. Фундаментальные принципы управления
- •1.2.1. Принцип разомкнутого управления
- •1.2.2. Принцип компенсации
- •1.2.3. Принцип обратной связи
- •Лекция 2.Статический режим сау
- •2.1. Основные виды сау
- •2.2. Статические характеристики
- •2.3. Статическое и астатическое регулирование
- •Лекция 3.Динамический режим сау
- •3.1. Динамический режим сау. Уравнение динамики
- •3.2. Линеаризация уравнения динамики
- •3.3. Передаточная функция
- •3.4. Элементарные динамические звенья
- •Лекция 4.Структурные схемы сау
- •4.1. Эквивалентные преобразования структурных схем
- •4.2. Сар напряжения генератора постоянного тока
- •Лекция 5.Временные характеристики
- •5.1. Понятие временных характеристик
- •5.2. Переходные характеристики элементарных звеньев
- •5.2.1. Безынерционное (пропорциональное, усилительное) звено
- •5.2.2. Интегрирующее (астатическое) звено
- •5.2.3. Инерционное звено первого порядка (апериодическое)
- •5.2.4. Инерционные звенья второго порядка
- •5.2.5. Дифференцирующее звено
- •Лекция 6.Частотные характеристики
- •6.1. Понятие частотных характеристик
- •6.2. Частотные характеристики типовых звеньев
- •6.2.1. Безынерционное звено
- •6.2.2. Интегрирующее звено
- •6.2.3. Апериодическое звено
- •6.2.4. Инерционные звенья второго порядка
- •6.2.5. Правила построения чх элементарных звеньев
- •Лекция 7.Чх разомкнутых сау
- •7.1. Частотные характеристики разомкнутых одноконтурных сау
- •7.2. Законы регулирования
- •Лекция 8.Алгебраические критерии устойчивости
- •8.1. Понятие устойчивости системы
- •8.2. Алгебраические критерии устойчивости
- •8.2.1. Необходимое условие устойчивости
- •8.2.1. Критерий Рауса
- •8.2.2. Критерий Гурвица
- •Лекция 9.Частотные критерии устойчивости
- •9.1. Принцип аргумента
- •9.2. Критерий устойчивости Михайлова
- •9.3. Критерий устойчивости Найквиста
- •Лекция 10.D-разбиение. Запас устойчивости
- •10.1. Понятие структурной устойчивости. Афчх астатических сау
- •10.2. Понятие запаса устойчивости
- •10.3. Анализ устойчивости по лчх
- •Лекция 11.Качество сау
- •11.1. Теоретическое обоснование метода d-разбиений
- •11.3. Прямые методы оценки качества управления
- •11.3.1. Оценка переходного процесса при ступенчатом воздействии.
- •11.3.2. Оценка качества управления при периодических возмущениях
- •Лекция 12.Корневой и интегральный методы оценки качества сау
- •12.1. Корневой метод оценки качества управления
- •12.2. Интегральные критерии качества
- •Лекция 13.Частотные методы оценки качества
- •13.1. Теоретическое обоснование
- •13.2. Основные соотношения между вчх и переходной характеристикой
- •13.3. Метод трапеций
- •Лекция 14.Синтез сау
- •14.1. Синтез сау
- •14.1.1. Включение корректирующих устройств
- •14.1.2. Синтез корректирующих устройств.
- •14.2. Коррекция свойств сау изменением параметров звеньев
- •14.2.1. Изменение коэффициента передачи
- •14.2.2. Изменение постоянной времени звена сау
- •Лекция 15.Включение корректирующих звеньев
- •15.1. Коррекция свойств сау включением последовательных корректирующих звеньев
- •15.1.1. Включение интегрирующего звена в статическую сау
- •15.1.2. Включение апериодического звена
- •15.1.3. Включение форсирующего звена
- •15.1.4. Включение звена со сложной передаточной функцией
- •15.2. Последовательная коррекция по задающему воздействию
- •15.3. Коррекция с использованием неединичной обратной связи
- •15.4. Компенсация возмущающего воздействия
5.2. Переходные характеристики элементарных звеньев
Здесь мы рассмотрим только самые основные звенья.
5.2.1. Безынерционное (пропорциональное, усилительное) звено
Это звено, для которого в любой момент времени выходная величина пропорциональна входной.
Его уравнение:
y(t) = k
u(t).
Передаточная функция: W(p) = k.
Переходная
характеристика: h(t) = k
1(t).

В ответ на единичное ступенчатое воздействие сигнал на выходе мгновенно достигает величины в kраз большей, чем на входе и сохраняет это значение (рис.43). Приk = 1звено никак себя не проявляет, а при k = - 1- инвертирует входной сигнал.
Любое реальное звено обладает инерционностью, но с определенной точностью некоторые реальные звенья могут рассматриваться как безынерционные, например, жесткий механический рычаг, редуктор, потенциометр, электронный усилитель и т.п.
5.2.2. Интегрирующее (астатическое) звено
Его уравнение
,
или
,
илиpy = ku.
Передаточная функция: W(p) = k/p.
Переходная
характеристика:
(рис.44).

При k = 1звено представляет собой “чистый” интеграторW(p) = 1/p. Интегрирующее звено неограниченно "накапливает" входное воздействие. Примеры интегрирующих звеньев: электродвигатель, поршневой гидравлический двигатель, емкость и т.п. Введение его в САУ превращает систему в астатическую, то есть ликвидирует статическую ошибку.
5.2.3. Инерционное звено первого порядка (апериодическое)
Уравнение динамики:
,
илиTpy + y = ku.
Передаточная
функция: W(p) =
.
Переходная характеристика может быть получена с помощью формулы Хевисайда:
,
где p1 = - 1/T- корень уравненияD(p) = Tp + 1 = 0; D’(p1) = T.

Переходная характеристика имеет вид экспоненты (рис.45), по которой можно определить передаточный коэффициент k, равный установившемуся значению h(t), и постоянную времениТпо времениt, соответствующему точке пересечения касательной к кривой в начале координат с ее асимптотой. При достаточно большихТзвено на начальном участке может рассматриваться как интегрирующее, при малыхТзвено приближенно можно рассматривать как безынерционное. Примеры апериодического звена: термопара, электродвигатель, четырехполюсник из сопротивления и емкости или сопротивления и индуктивности.
5.2.4. Инерционные звенья второго порядка
Его уравнение: T12p2y + T2py + y = ku.
Передаточная
функция: W(p) =
.
Решение уравнения
зависит от соотношения постоянных
времени T1иT2,
которое определяет коэффициент затухания
r =
.
Можно записатьW(p) =
,
гдеT = T1.
Если r
1, то знаменательW(p)имеет два
вещественных корняp1иp2и раскладывается на два сомножителя:
T2p2
+ 2rTp + 1 = T2
(p
- p1).(p
- p2).
Такое звено можно разложить на два апериодических звена первого порядка, поэтому оно не является элементарным.

При r<1корни
полинома знаменателяW(p)комплексно
сопряженные:p1,2
=
±
j
.
Переходная характеристика представляет
собой выражение, характеризующее
затухающий колебательный процесс с
затуханием
и
частотой
(рис.46).
Такое звено называетсяколебательным.
Приr = 0колебания носят незатухающий
характер. Такое звено является частным
случаем колебательного звена и называетсяконсервативным. Примерами
колебательного звена могут служить
пружина, имеющая успокоительное
устройство, электрический колебательный
контур с активным сопротивлением и т.п.
Зная характеристики реального устройства
можно определить его параметры как
колебательного звена. Передаточный
коэффициент kравен установившемуся
значению переходной функции.
