- •Теория автоматического управления
- •Курс лекций Составил: к.Т.Н., доцент Тихонов а.И.
- •Введение
- •1.1. Общие понятия
- •1.2. Фундаментальные принципы управления
- •1.2.1. Принцип разомкнутого управления
- •1.2.2. Принцип компенсации
- •1.2.3. Принцип обратной связи
- •Статический режим сау
- •2.1. Основные виды сау
- •2.2. Статические характеристики
- •2.3. Статическое и астатическое регулирование
- •Динамический режим сау
- •3.1. Динамический режим сау. Уравнение динамики
- •3.2. Линеаризация уравнения динамики
- •3.3. Передаточная функция
- •3.4. Элементарные динамические звенья
- •Структурные схемы сау
- •4.1. Эквивалентные преобразования структурных схем
- •1. Последовательное соединение(рис.28) - выходная величина предшествующего звена подается на вход последующего. При этом можно записать:
- •4.2. Сар напряжения генератора постоянного тока
- •Временные характеристики
- •5.1. Понятие временных характеристик
- •5.2. Переходные характеристики элементарных звеньев
- •5.2.1. Безынерционное (пропорциональное, усилительное) звено
- •5.2.2. Интегрирующее (астатическое) звено
- •5.2.3. Инерционное звено первого порядка (апериодическое)
- •5.2.4. Инерционные звенья второго порядка
- •5.2.5. Дифференцирующее звено
- •Частотные характеристики
- •6.1. Понятие частотных характеристик
- •6.2. Частотные характеристики типовых звеньев
- •6.2.1. Безынерционное звено
- •6.2.2. Интегрирующее звено
- •6.2.3. Апериодическое звено
- •6.2.4. Инерционные звенья второго порядка
- •6.2.5. Правила построения чх элементарных звеньев
- •Чх разомкнутых сау
- •7.1. Частотные характеристики разомкнутых одноконтурных сау
- •7.2. Законы регулирования
- •Алгебраические критерии устойчивости
- •8.1. Понятие устойчивости системы
- •8.2. Алгебраические критерии устойчивости
- •8.2.1. Необходимое условие устойчивости
- •8.2.1. Критерий Рауса
- •8.2.2. Критерий Гурвица
- •Частотные критерии устойчивости
- •9.1. Принцип аргумента
- •9.2. Критерий устойчивости Михайлова
- •9.3. Критерий устойчивости Найквиста
- •10.1. Понятие структурной устойчивости. Афчх астатических сау
- •10.2. Понятие запаса устойчивости
- •10.3. Анализ устойчивости по лчх
- •Качество сау
- •11.1. Теоретическое обоснование метода d-разбиений
- •11.3. Прямые методы оценки качества управления
- •11.3.1. Оценка переходного процесса при ступенчатом воздействии.
- •11.3.2. Оценка качества управления при периодических возмущениях
- •Корневой и интегральный методы оценки качества сау
- •12.1. Корневой метод оценки качества управления
- •12.2. Интегральные критерии качества
- •Частотные методы оценки качества
- •13.1. Теоретическое обоснование
- •13.2. Основные соотношения между вчх и переходной характеристикой
- •2.Сау с вогнутой вчх (рис.97а кривая 1) не имеет перерегулирования, то есть ей соответствует монотонная переходная характеристика (рис.97б кривая 1).
- •13.3. Метод трапеций
- •Синтез сау
- •14.1. Синтез сау
- •14.1.1. Включение корректирующих устройств
- •14.1.2. Синтез корректирующих устройств.
- •14.2. Коррекция свойств сау изменением параметров звеньев
- •14.2.1. Изменение коэффициента передачи
- •14.2.2. Изменение постоянной времени звена сау
- •Включение корректирующих звеньев
- •15.1. Коррекция свойств сау включением последовательных корректирующих звеньев
- •15.1.1. Включение интегрирующего звена в статическую сау
- •15.1.2. Включение апериодического звена
- •15.1.3. Включение форсирующего звена
- •15.1.4. Включение звена со сложной передаточной функцией
- •15.2. Последовательная коррекция по задающему воздействию
- •15.3. Коррекция с использованием неединичной обратной связи
- •15.4. Компенсация возмущающего воздействия
Структурные схемы сау
4.1. Эквивалентные преобразования структурных схем
Структурная схема САУ в простейшем случае строится из элементарных динамических звеньев. Но несколько элементарных звеньев могут быть заменены одним звеном со сложной передаточной функцией. Для этого существуют правила эквивалентного преобразования структурных схем. Рассмотрим возможные способы преобразований.
1. Последовательное соединение(рис.28) - выходная величина предшествующего звена подается на вход последующего. При этом можно записать:
y1 = W1yo; y2 = W2y1; ...; yn = Wnyn - 1 = >
yn = W1W2.....Wn.yo = Wэквyo,
где.
То есть цепочка последовательно соединенных звеньев преобразуется в эквивалентное звено с передаточной функцией, равной произведению передаточных функций отдельных звеньев.
2.Параллельно - согласное соединение(рис.29) - на вход каждого звена подается один и тот же сигнал, а выходные сигналы складываются. Тогда:
y = y1 + y2 + ... + yn = (W1 + W2 + ... + W3)yo = Wэквyo,
где .
То есть цепочка звеньев, соединенных параллельно - согласно, преобразуется в звено с передаточной функцией, равной сумме передаточных функций отдельных звеньев.
3.Прараллельно - встречное соединение(рис. 30а) - звено охвачено положительной или отрицательной обратной связью. Участок цепи, по которому сигнал идет в противоположном направлении по отношению к системе в целом (то есть с выхода на вход) называетсяцепью обратной связис передаточной функциейWос. При этом для отрицательной ОС:
y = Wпu; y1 = Wосy; u = yo - y1,
следовательно
y = Wпyo - Wпy1 = Wпyo - WпWocy = >
y(1 + WпWoc) = Wпyo = > y = Wэквyo,
где .
Аналогично: - для положительной ОС.
Если Woc = 1, то обратная связь называется единичной (рис.30б), тогдаWэкв = Wп /(1 ± Wп).
Замкнутую систему называютодноконтурной, если при ее размыкании в какой либо точке получают цепочку из последовательно соединенных элементов (рис.31а). Участок цепи, состоящий из последовательно соединенных звеньев, соединяющий точку приложения входного сигнала с точкой съема выходного сигнала называетсяпрямой цепью (рис.31б, передаточная функция прямой цепиWп = WoW1W2). Цепь из последовательно соединенных звеньев, входящих в замкнутый контур называютразомкнутой цепью(рис.46в, передаточная функция разомкнутой цепиWp = W1W2W3W4). Исходя из приведенных выше способов эквивалентного преобразования структурных схем, одноконтурная система может быть представлена одним звеном с передаточной функцией:Wэкв = Wп/(1 ± Wp)- передаточная функция одноконтурной замкнутой системы с отрицательной ОС равна передаточной функции прямой цепи, деленной на единицу плюс передаточная функция разомкнутой цепи. Для положительной ОС в знаменателе знак минус. Если сменить точку снятия выходного сигнала, то меняется вид прямой цепи. Так, если считать выходным сигнал y1на выходе звенаW1, тоWp = WoW1. Выражение для передаточной функции разомкнутой цепи не зависит от точки снятия выходного сигнала.
Замкнутые системы бываютодноконтурными имногоконтурной (рис.32).Чтобы найти эквивалентную передаточную функцию для данной схемы нужно сначала осуществить преобразование отдельных участков.
Если многоконтурная система имеетперекрещивающиеся связи(рис.33), то для вычисления эквивалентной передаточной функции нужны дополнительные правила:
4. При переносе сумматора через звено по ходу сигнала необходимо добавить звено с передаточной функцией того звена, через которое переносится сумматор. Если сумматор переносится против хода сигнала, то добавляется звено с передаточной функцией, обратной передаточной функции звена, через которое переносим сумматор (рис.34).
Так с выхода системы на рис.34а снимается сигнал
y2 = (f + yoW1)W2.
Такой же сигнал должен сниматься с выходов систем на рис.34б:
y2 = fW2 + yoW1W2 = (f + yoW1)W2,
и на рис.34в:
y2 = (f(1/W1) + yo)W1W2 = (f + yoW1)W2.
При подобных преобразованиях могут возникать неэквивалентные участки линии связи (на рисунках они заштрихованы).
5. При переносе узла через звено по ходу сигнала добавляется звено с передаточной функцией, обратной передаточной функции звена, через которое переносим узел. Если узел переносится против хода сигнала, то добавляется звено с передаточной функцией звена, через которое переносится узел (рис.35). Так с выхода системы на рис.35а снимается сигнал
y1 = yoW1.
Такой же сигнал снимается с выходов рис.35б:
y1 = yoW1W2/W2 = yoW1
и рис.35в:
y1 = yoW1.
6. Возможны взаимные перестановки узлов и сумматоров: узлы можно менять местами (рис. 36а); сумматоры тоже можно менять местами (рис.36б); при переносе узла через сумматор необходимо добавить сравнивающий элемент (рис.36в: y = y1 + f1 = > y1 = y - f1) или сумматор (рис.36г:y = y1 + f1).
Во всех случаях переноса элементов структурной схемы возникают неэквивалентные участкилинии связи, поэтому надо быть осторожным в местах съема выходного сигнала.
При эквивалентных преобразованиях одной и той же структурной схемы могут быть получены различные передаточные функции системы по разным входам и выходам. Так на рис.48 имеется два входа: по управляющему воздействию uи возмущениюfпри одном выходеy. Такая схема может быть преобразована к одному звену с двумя передаточными функциямиWuyиWfy.