
- •Казахстанско-британский технический университет факультет информационных технологий кафедра высшей и прикладной математики
- •Рысбайулы б.
- •§1. Интерполирование функций. Сплайны первого и второго порядка.
- •1.1.Сплайн 1-го порядка (кусочно-линейная интерполяция).
- •1.2.Сплайн 2-го порядка s(X).
- •Из последней системы определяются
- •1.3. Расчетные формулы сплайна 2-го порядка.
- •1.4. Переменные и структурная схема расчета.
- •С начало труктурная схема расчета.
- •§2. Приближенное вычисление определенного интеграла
- •2.4. Алгоритм вычисления определенного интеграла.
- •Структурная схема расчета.
- •2.5. Фильтрация жидкости и газа
- •2.6. Несобственный интеграл с бесконечными пределами
- •§3. Расчет показателей нефтяного месторождения в законтурной области пласта при упругом режиме.
- •3.1. Постановка задачи.
- •3.2. Математическая модель задачи.
- •3.3.Численные методы решения задачи (3.1) – (3.2).
- •2. Метод Рунге – Кутта второго порядка точности.
- •3. Метод Рунге – Кутта третьего порядка точности.
- •4. Метод Рунге – Кутта четвертого порядка точности.
- •§ 4. Задача теплообмена в трубопроводе нефтеперевозки . Дифференциальные уравнения второго порядка. Краевая задача
- •4.1. Постановка задачи.
- •4.2. Математическая модель.
- •4.3. Приближенный метод решения задачи (4.1) – (4.2)
- •4.4. Трехточечная разностная схема. Метод прогонки.
- •4.5. Переменные. Блок-схема.
- •Блок-схема
- •§ 5. Смешанная краевая задача для уравнения параболического типа. Нестационарный теплообмен при перевозке нефти трубопроводом.
- •5.1. Постановка задачи
- •5.2. Математическая модель.
- •Систему линейных алгебраических уравнений перепишем в виде
- •7.4. Расчетная схема.
- •7.5. Переменные и блок – схема.
- •Блок-схема
- •7.6. Задания для лабораторной работы.
- •§8. Обратная задача для уравнения теплопроводности.
- •Численная реализация
- •Связь между уравнениями
- •Литература
- •Дополнительная литература
§ 5. Смешанная краевая задача для уравнения параболического типа. Нестационарный теплообмен при перевозке нефти трубопроводом.
5.1. Постановка задачи
П одогретый до температуры θ1 (град.) нефть перевозится по подземному трубопроводу.
Глубина прокладки нефтепровода Н(м).
Считая,
ч |
х
Н
О
|
Рис. 14
5.2. Математическая модель.
Ось ОХ направим вертикально вверх (рис. 14). На оси ОХ выделим элемент с координатами х и х + Δх. Тогда приращение энергии в направлений оси х за время Δt будет
(7.1)
С другой стороны, согласно закону сохранения энергий,
(7.2)
Левые части (7.1) и (7.2) равны, поэтому
где ρ– плотность грунта [кг/м3];
с – массовая теплоемкость грунта [кдж/кг.град];
λ – коэффициент теплопроводности грунта [вт/м·град.].
При
х = 0
задается температура
.
На поверхности земли происходит
конвективный теплообмен между поверхностью
тела и окружающей средой (воздух).
В основу изучения конвективного теплообмена положен закон Ньютона-Рихмана
где q – плотность теплового потока, вт/м2;
θ0 – температура воздуха, 0С;
θгр – температура поверхности грунта,0С;
α – коэффициент теплоотдачи, вт/(м2·град);
Согласно закону сохранения энергии, количество теплоты, отдаваемый единицей поверхности тела окружающей среде за единицу времени вследствие теплоотдачи, должно быть равно теплоте, которая путем теплопроводности подводится к единице поверхности в единицу времени со стороны внутренних частей тела, т.е.
(7.3)
Равенство (7.3) является математической формулировкой граничного условия третьего рода; оно является действительной для каждого момента времени t.
называется
граничным условием первого рода.
Получена задача: найти решение нестационарного параболического уравнения со смешанными граничными условиями, т.е.
(7.4)
θ(t,0) = θ1 = const (7.5)
(7.6)
(7.7)
Теорема 1. При определенных условиях на ρ(θ), с(θ) и λ(θ) задача (7.4) - (7.7) имеет единственное решение.
7.3. Приближенный метод решения задачи (7.4) – (7.6).
Решение
задачи (7.4) – (7.6) зависит от двух переменных
,
где t
– время, час; х
– координата
точки грунта, м. Поэтому задача (7.4)
– (7.6) решается в области
Q=
(0, Тmax)·(0,H),
Сетка. Отрезок [0, H] разбиваем на N равных частей с шагом h = H/N, а отрезок [0, Tmax] на М равных частей с шагом ∆t = Tmax /M. Тогда получается сетка (рис. 2).
В рис.2 «крестиками» - х обозначены граничные узлы, а «ноликами» - 0 обозначены внутренние узлы. |
Н х х х х х
х о о о о
х о о о о
х х х х х t Тmax Рис. 2 |
А
ппроксимация
выражений
т.е. функций ρ(θ) и с(θ) определяются на нижних слоях. В начальный момент времени, т.е. при
.
Вместо задачи (7.4) – (7.7) решается приближенная задача
(7.8)
(7.9)
(7.10)
В системе (7.8) i = 1, 2, …, N-1 при каждом j=0,1,…,M-1.