
- •Лекция 1 Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1. Электростатика
- •1.1. Электрические заряды. Способы получения зарядов. Закон сохранения электрического заряда.
- •1.2. Взаимодействие электрических зарядов. Закон Кулона. Применение закона Кулона для расчета сил взаимодействия протяженных заряженных тел.
- •1.3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Лекция 2 Основные уравнения электростатики в вакууме.
- •1.4. Поток вектора напряженности электрического поля. Теорема Гаусса.
- •Применение теоремы Гаусса для расчета электрических полей.
- •Работа сил поля по перемещению заряда. Потенциал и разность потенциалов электрического поля.
- •1.7. Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •1.8. Эквипотенциальные линии и поверхности и их свойства.
- •1.9. Потенциалы простейших электрических полей.
- •Лекция 3 Электростатическое поле в диэлектриках.
- •1.10. Поляризация диэлектриков. Свободные и связанные заряды. Основные виды поляризации диэлектриков.
- •2) Деформационная или электронная поляризация (неполярные диэлектрики).
- •3) Ионная поляризация (кристаллы).
- •4) Сегнетоэлектрики и пироэлектрики.
- •1.11. Вектор поляризации и вектор электрической индукции.
- •1.12. Напряженность электрического поля в диэлектрике.
- •1.13. Основные теоремы электростатики в интегральной и дифференциальной форме.
- •1) Теорема Гаусса.
- •2) Теорема о циркуляции электрического поля.
- •1.14. Граничные условия для электрического поля.
- •Лекция 4 Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •1 .15. Равновесное распределение зарядов на проводниках.
- •1.16. Электроемкость проводников. Конденсаторы.
- •1.17. Вычисление емкости простых конденсаторов.
- •1.18. Соединение конденсаторов.
- •1 ) Последовательное соединение.
- •2) Параллельное соединение.
- •1 .19. Энергия системы неподвижных точечных зарядов.
- •1.20. Энергия заряженного проводника и заряженного конденсатора.
- •1.21. Энергия электростатического поля.
- •Лекция 5
- •2. Постоянный электрический ток
- •2.1. Характеристики тока. Сила и плотность тока. Падение потенциала вдоль проводника с током.
- •2.2. Закон Ома для однородного участка цепи. Сопротивление проводников.
- •2.3. Дифференциальная форма закона Ома.
- •2.4. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Н апряжение на зажимах источника тока.
- •2.6. Разветвленные цепи. Правила Кирхгофа.
- •2.8. Работа и мощность постоянного тока. Закон Джоуля – Ленца.
- •2.9. Кпд источника тока.
- •Лекция 6 Основы классической теории электропроводности металлов.
- •2.10. Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Лекция 7 Электрический ток в различных средах.
- •2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
- •2.15. Электропроводность газов. Основные виды газового разряда. Плазма.
- •2.16. Электрический ток в вакууме. Работа выхода электрона из металла. Явление термоэлектронной эмиссии.
- •Лекция 8
- •3. Магнитостатика
- •Постоянное магнитное поле.
- •3.1. Взаимодействие проводников с током. Закон Ампера.
- •3.2. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •Лекция 9 Контур с током в магнитном поле.
- •3.4. Магнитный момент тока.
- •3.5. Магнитное поле на оси кругового витка с током.
- •3.6. Момент сил, действующих на контур с током в магнитном поле.
- •3.7. Энергия контура с током в магнитном поле.
- •3.8. Контур с током в неоднородном магнитном поле.
- •3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Лекция 10 Основные уравнения магнитостатики в вакууме.
- •3.10. Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике. Вихревой характер магнитного поля.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
1.11. Вектор поляризации и вектор электрической индукции.
Для количественной характеристики поляризации диэлектриков вводят понятие вектора поляризации как полного (суммарного) дипольного момента всех молекул в единице объема диэлектрика:
,
- дипольный момент одной молекулы.
Суммирование производится по всем молекулам, находящимся в объеме V.
Легко видеть, что нормальная составляющая вектора поляризации Рn численно равна поверхностной плотности поляризационных зарядов на диэлектрике σ ′ (рис.3.10):
Рис.3.10. Вектор поляризации.
Последняя формула дает не только величину, но и знак поляризационных зарядов. В тех точках поверхности диэлектрика, где угол θ между внешней нормалью и вектором острый, σ ′ положительна, а в тех точках, где угол между внешней нормалью и тупой, σ ′ отрицательна.
Наряду с вектором
поляризации
,
для описания электрического поля в
диэлектриках вводят также понятие
вектора электрической индукции
.
По определению:
где - напряженность электрического поля в диэлектрике.
Для большинства диэлектриков (кроме сегнетоэлектриков) вектор поляризации
.
Безразмерная
величина
называется диэлектрической
восприимчивостью. Она связана с
поляризуемостью молекулы β данного
диэлектрика простым соотношением:
α = nβ, где n
– число молекул в единице объема. В
этом случае электрическая индукция
.
Постоянная
называется диэлектрической
проницаемостью (ε = 1 – для вакуума).
Таким образом, для многих изотропных диэлектриков можно считать, что
1.12. Напряженность электрического поля в диэлектрике.
В соответствии с
принципом суперпозиции электрическое
поле в диэлектрике векторно складывается
из внешнего поля
и поля поляризационных зарядов
(рис.3.11).
или по абсолютной
величине
Мы видим, что
величина напряженности поля
в диэлектрике меньше, чем вакууме.
Другими словами, любой диэлектрик
ослабляет внешнее электрическое
поле.
Рис.3.11. Электрическое поле в диэлектрике.
Индукция
электрического поля
,
где
,
,
то есть
.
С другой стороны,
,
откуда находим, что ε0Е0
= ε0εЕ и,
следовательно, напряженность электрического
поля в изотропном диэлектрике есть:
Эта формула
раскрывает физический смысл
диэлектрической проницаемости и
показывает, что напряженность
электрического поля в диэлектрике в
раз меньше, чем в вакууме. Отсюда
следует простое правило: чтобы написать
формулы электростатики в диэлектрике,
надо в соответствующих формулах
электростатики вакуума рядом с
приписать
.
В частности, закон Кулона в скалярной форме запишется в виде:
1.13. Основные теоремы электростатики в интегральной и дифференциальной форме.
1) Теорема Гаусса.
(вакуум)
(среда)
По теореме преобразования поверхностного интеграла в объемный (теореме Остроградского) имеем:
откуда
следует дифференциальная форма
записи теоремы Гаусса:
где ρ – объемная плотность свободных зарядов;
.
Используя определение
,
нетрудно показать, что
,
где
-
объемная плотность связанных
зарядов.