- •Лекция 1 Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1. Электростатика
- •1.1. Электрические заряды. Способы получения зарядов. Закон сохранения электрического заряда.
- •1.2. Взаимодействие электрических зарядов. Закон Кулона. Применение закона Кулона для расчета сил взаимодействия протяженных заряженных тел.
- •1.3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Лекция 2 Основные уравнения электростатики в вакууме.
- •1.4. Поток вектора напряженности электрического поля. Теорема Гаусса.
- •Применение теоремы Гаусса для расчета электрических полей.
- •Работа сил поля по перемещению заряда. Потенциал и разность потенциалов электрического поля.
- •1.7. Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •1.8. Эквипотенциальные линии и поверхности и их свойства.
- •1.9. Потенциалы простейших электрических полей.
- •Лекция 3 Электростатическое поле в диэлектриках.
- •1.10. Поляризация диэлектриков. Свободные и связанные заряды. Основные виды поляризации диэлектриков.
- •2) Деформационная или электронная поляризация (неполярные диэлектрики).
- •3) Ионная поляризация (кристаллы).
- •4) Сегнетоэлектрики и пироэлектрики.
- •1.11. Вектор поляризации и вектор электрической индукции.
- •1.12. Напряженность электрического поля в диэлектрике.
- •1.13. Основные теоремы электростатики в интегральной и дифференциальной форме.
- •1) Теорема Гаусса.
- •2) Теорема о циркуляции электрического поля.
- •1.14. Граничные условия для электрического поля.
- •Лекция 4 Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •1 .15. Равновесное распределение зарядов на проводниках.
- •1.16. Электроемкость проводников. Конденсаторы.
- •1.17. Вычисление емкости простых конденсаторов.
- •1.18. Соединение конденсаторов.
- •1 ) Последовательное соединение.
- •2) Параллельное соединение.
- •1 .19. Энергия системы неподвижных точечных зарядов.
- •1.20. Энергия заряженного проводника и заряженного конденсатора.
- •1.21. Энергия электростатического поля.
- •Лекция 5
- •2. Постоянный электрический ток
- •2.1. Характеристики тока. Сила и плотность тока. Падение потенциала вдоль проводника с током.
- •2.2. Закон Ома для однородного участка цепи. Сопротивление проводников.
- •2.3. Дифференциальная форма закона Ома.
- •2.4. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Н апряжение на зажимах источника тока.
- •2.6. Разветвленные цепи. Правила Кирхгофа.
- •2.8. Работа и мощность постоянного тока. Закон Джоуля – Ленца.
- •2.9. Кпд источника тока.
- •Лекция 6 Основы классической теории электропроводности металлов.
- •2.10. Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Лекция 7 Электрический ток в различных средах.
- •2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
- •2.15. Электропроводность газов. Основные виды газового разряда. Плазма.
- •2.16. Электрический ток в вакууме. Работа выхода электрона из металла. Явление термоэлектронной эмиссии.
- •Лекция 8
- •3. Магнитостатика
- •Постоянное магнитное поле.
- •3.1. Взаимодействие проводников с током. Закон Ампера.
- •3.2. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •Лекция 9 Контур с током в магнитном поле.
- •3.4. Магнитный момент тока.
- •3.5. Магнитное поле на оси кругового витка с током.
- •3.6. Момент сил, действующих на контур с током в магнитном поле.
- •3.7. Энергия контура с током в магнитном поле.
- •3.8. Контур с током в неоднородном магнитном поле.
- •3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Лекция 10 Основные уравнения магнитостатики в вакууме.
- •3.10. Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике. Вихревой характер магнитного поля.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
Лекция 1 Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
Предмет электродинамики. Электродинамика - раздел физики, изучающий взаимодействие электрически заряженных частиц и особый вид материи, порождаемый этими частицами – электромагнитное поле.
1. Электростатика
Электростатика – раздел электродинамики, изучающий взаимодействие неподвижных заряженных тел. Электрическое поле, осуществляющее это взаимодействие, называется электростатическим.
1.1. Электрические заряды. Способы получения зарядов. Закон сохранения электрического заряда.
В природе имеется два рода электрических зарядов, условно названных положительными и отрицательными. Исторически положительными принято называть заряды, подобные тем, которые возникают при натирании стекла о шелк; отрицательными – заряды, подобные тем, которые возникают при натирании янтаря о мех. Заряды одного знака отталкиваются друг от друга, заряды разных знаков – притягиваются (рис.1.1).
Ш елк + Стекло =
М ех + Янтарь =
Рис.1.1. Положительные и отрицательные заряды.
По своей сути электрические заряды атомистичны (дискретны). Это означает, что в природе существует мельчайший, далее не делимый заряд, получивший название элементарного. Величина элементарного заряда по абсолютной величине в СИ:
Электрические заряды присущи многим элементарным частицам, в частности, электронам и протонам, входящим в состав различных атомов, из которых построены все тела в природе. Следует, однако, отметить, что согласно современным представлениям сильновзаимодействующие частицы – адроны (мезоны и барионы) – построены из так называемых кварков – особых частиц, несущих дробный заряд. В настоящее время известно шесть видов кварков - u, d, s, t, b и c – по первым буквам слов: up-верхний, down-нижний, side-way-боковой (или strange-странный), top-вершинный, bottom - крайний и charm-очарованный. Эти кварки разбиваются на пары: (u,d), (c,s), (t,b). Кварки u, c, t имеют заряд +2/3, а заряд кварков d, s, b равен – 1/3. Каждому кварку соответствует свой антикварк. Кроме того, каждый из кварков может находиться в одном из трех цветных состояний (красном, желтом и синем). Мезоны состоят из двух кварков, барионы – из трех. В свободном состоянии кварки не наблюдаются. Это позволяет считать, что элементарным зарядом в природе является все же целочисленный заряд е, а не дробный заряд кварков. Заряд макроскопических тел образуется совокупностью элементарных зарядов и является, таким образом, целым кратным е.
Для проведения опытов с электрическими зарядами используют различные способы их получения. Самый простой и самый древний способ – натирание одних тел другими. При этом само по себе трение здесь не играет принципиальной роли. Электрические заряды всегда возникают при плотном контакте поверхностей соприкасающихся тел. Трение (притирание) помогает лишь устранить неровности на поверхности соприкасающихся тел, мешающих их плотному прилеганию друг к другу, при котором создаются благоприятные условия для перехода зарядов от одного тела к другому. Этот способ получения электрических зарядов лежит в основе действия некоторых электрических машин, например, электростатического генератора Ван де Графа (Van de Graaff R., 1901-1967), применяемого в физике высоких энергий.
Другой способ получения электрических зарядов основан на использовании явления электростатической индукции. Суть его иллюстрируется рис.1.2. Поднесем к разделенному на две половины незаряженному металлическому телу (не касаясь его) другое тело, заряженное, скажем, положительно. Благодаря смещению некоторой доли имеющихся в металле свободных отрицательно заряженных электронов, левая половина исходного тела приобретет избыточный отрицательный заряд, а правая - такой же по величине, но противоположный по знаку положительный заряд. Если теперь в присутствии внешнего заряженного тела развести обе половины в разные стороны и удалить заряженное тело, то каждая из них окажется заряженной. В результате мы получим два новых тела, заряженных равными по величине и противоположными по знаку зарядами.
Рис.1.2. Опыт, иллюстрирующий явление электростатической индукции.
Проделанный опыт демонстрирует также закон сохранения электрического заряда, согласно которому полный заряд электрически изолированной системы1) остается постоянным:
В нашем конкретном случае полный заряд исходного тела до и после опыта не изменился – остался равным нулю: