- •Список использованных сокращений
- •Введение
- •1. Основы локальных сетей
- •1.1. Способы соединения персональных компьютеров
- •1.2. Стандартизация лвс
- •1.2.1. История стандартизации лвс
- •1.2.2. Эталонная модель взаимодействия открытых систем (эм вос) – Open System Interconnection (osi)
- •Функции уровней
- •1.2.3. Источники стандартов
- •1.2.4. Структура стандартов ieee 802.1 – 802.12
- •Раздел 802.2 определяет подуровень управления логическим каналом llc;
- •1.3. Система «Клиент – сервер»
- •1.4. Типы сетей и серверов
- •1.5. Топология сетей
- •1.5.1. Топология «Звезда»
- •1.5.2. Топология «Кольцо»
- •1.5.3. Топология «Общая шина»
- •1.5.4. Топология «Дерево»
- •1.6. Физическая среда для передачи данных
- •1.6.1. Витая пара
- •1.6.2. Коаксиальный кабель
- •1.6.3. Оптоволоконные линии
- •1.6.4. Радиолинии и инфракрасное излучение
- •1.7. Методы доступа в лвс
- •2. Основные компоненты сетей
- •2.1. Основные программные и аппаратные компоненты сети
- •2.2. Типовой состав оборудования локальной сети
- •2.2.1. Структурированная кабельная система
- •2.2.2. Сетевые адаптеры
- •2.2.3.Физическая структуризация локальной сети. Повторители и концентраторы
- •2.2.4. Логическая структуризация сети. Мосты и коммутаторы
- •2.2.5. Маршрутизаторы
- •2.2.6. Функциональное соответствие видов коммуникационного оборудования уровням модели osi
- •3. Технологии локальных вычислительных сетей
- •3.1. Технология Ethernet (ieee 802.3)
- •3.1.1. Основы технологии
- •3.1.2. Форматы кадров технологии Ethernet
- •3.1.3. Спецификации физической среды Ethernet
- •Стандарт 10Base-5
- •Стандарт 10Base-2
- •Стандарт 10Base-t
- •Стандарт 10Base-f
- •3.2.1. Распространение wlan в мире
- •3.2.2 Wlan в России
- •3.2.3. Стандарт ieee 802.11
- •Ieee 802.11 а, b, g и другие...
- •3.2.4. Стандарт ieee 802.16
- •Стандарт ieee 802.16a
- •3.3. Технология Token Ring (ieee 802.5)
- •3.3.1. Основы технологии
- •3.3.2. Физическая реализация сетей Token Ring
- •3.4. Развитие технологии Ethernet
- •3.4.1. Технология 100vg-AnyLan (ieee 802.12)
- •3.4.2. Технология Fast Ethernet (ieee 802.3u)
- •3.4.3. Технологии Gigabit Ethernet, Gigabit vg
- •3.5. Технология fddi
- •3.5.1. История создания стандарта fddi
- •3.5.2. Основы технологии
- •4. Безопасность и защита информации в сетях
- •4.1. Методы защиты от ошибок при передаче данных
- •4.2. Методы защиты от потери данных
- •4.2.1. Откат транзакций
- •4.2.2. Зеркальные диски
- •4.2.3. Резервирование дисков и каналов
- •4.2.4. Горячее резервирование серверов
- •4.2.5. Управление доступом
- •4.2.6. Использование источников бесперебойного питания
- •4.2.7. Применение средств архивирования и резервного копирования
- •4.3. Обеспечение безопасности информации в сетях
- •Заключение
- •Список использованной литературы.
1.2. Стандартизация лвс
1.2.1. История стандартизации лвс
В последние годы среди вычислительных комплексов и вычислительных сетей во всех развитых странах мира наиболее широкое развитие получили локальные вычислительные сети.
Их возможности и преимущества перед традиционными средствами передачи и обработки данных весьма многообразны: они позволяют объединить в единую сеть устройства самых разных типов от микро- и персональных до суперЭВМ, обеспечивают значительные скорости передачи данных. Любое из подключенных устройств может использовать сеть для отправления и получения информации.
К настоящему времени в различных странах мира созданы и находятся в эксплуатации многие десятки типов ЛВС с различными физическими средами, топологией, размерами, алгоритмами работы, архитектурной и структурной организацией.
К ЛВС предъявляют следующие требования [1, 2]:
1) высокая скорость. Скорость является важной характеристикой ЛВС – она позволяет быстро передавать данные. В идеале при посылке и получении данных через ЛВС время отклика должно быть почти таким же, как будто они получены от этой конкретной машины, а не из некоторого места вне сети. Для достижения такого небольшого времени отклика большинство ЛВС работают при скорости передачи данных от 1 Мбит/сек до нескольких Гбит/с;
2) ЛВС должны быть не только быстрыми, но и адаптируемыми. Они должны иметь гибкую архитектуру, которая позволяла бы располагать рабочие станции там, где это потребуется. А у пользователей должна быть возможность добавлять и переставлять РС или внешние устройства в сети или отключать их, не вызывая при этом прерывания работы сети;
3) ЛВС также должна быть надежной. Одно из главных преимуществ автономного ПК состоит в том, что влияние его поломки или сбоя ограничено. Остальные работы в организации не прерываются. При объединении ПК в ЛВС система должна сохранять такую надежность;
4) и, наконец, одной из существенных черт ЛВС является то, что она разработана для работы с интеллектуальными рабочими станциями. ПК, включенные в сеть, должны уметь использовать потенциальные возможности других интеллектуальных устройств. Однако в большинстве прикладных программ ПК используют только свои собственные вычислительные возможности.
Обычно термин локальная вычислительная сеть может использоваться в более широком смысле. ЛВС может обозначать все от больших корпоративных терминальных сетей до сетей, базирующихся на телефонных системах.
Эволюция локальных сетей в значительной степени способствовала появлению стандартов ЛВС. В начале появления сетей их пользователи и разработчики попытались подвести под стандарт сетевые аппаратные средства.
Фирма Xerox одной из первых приняла участие в стандартизации локальных сетей [4]. Ее участие заключалось в активном протежировании изготавливаемой ею сети Ethernet. Чтобы добиться превращения сети Ethernet в промышленный стандарт для возможно большего числа потенциальных клиентов, фирма Xerox учредила консорциум Ethernet, куда вошли фирма Intel и фирма Digital Equipment. В 1980 г. этот консорциум выпустил документацию на сеть Ethernet. С тех пор сеть Ethernet усиленно навязывается в качестве стандарта для локальных сетей.
В то время как разработчиками отыскивался стандарт для аппаратных средств, пользователи стали замечать недостатки такого стандарта. Наличие стандарта означает, что все используют одинаковый тип кабеля, одну топологию, один метод доступа к кабелю, одинаковые коммуникационные устройства для построения различных сетей (от сетей на 2 компьютера до крупных корпоративных сетей). Если бы такой стандарт стал реальностью, то каждый бы использовал некоторый стандартный набор аппаратных средств, а все другие средства, не включенные в стандарт, исчезли бы.
Проблема заключается в том, что аппаратные средства для ЛВС не могут быть оптимизированы из-за наличия нескольких критериев (скорость, стоимость, качество и др.). Единственный набор аппаратных средств не может быть наилучшим во всех ситуациях.
Например, для офиса врача потребуется локальная сеть из трех или четырех ПК; в этом случае наилучшей будет система с кабелем со скрученными парами проводов. Такой кабель нельзя использовать для передачи данных на большие расстояния, но он недорогой. В этой ситуации использование многоканального коаксиального кабеля или оптической системы было бы расточительством. В то же время, крупное учреждение нуждается в больших скоростях передачи данных на большие расстояния; в этой ситуации кабель со скрученными парами проводов непригоден. Аналогично, в других ситуациях наилучшее решение проблемы дадут другие системы аппаратных средств ЛВС.