
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ
БУДІВНИЦТВА І АРХІТЕКТУРИ
Розрахунок теплообмінного апарату
МЕТОДИЧНІ ВКАЗІВКИ
ДО ВИКОНАННЯ КУРСОВОЇ РОБОТИ
для студентів спеціальності 7.092108
„Теплогазопостачання і вентиляція”
всіх форм навчання
Київ – 2004
УДК 621.1.016.7
ББК 31.31
Т 38
Укладачі: Е.С.Малкін, д-р техн. наук, професор
І.Е.Фуртат, канд. техн. наук, доцент
Рецензент: Ю.М.Кольчик, канд. техн. наук, доцент
Відповідальний за випуск А.А.Худенко, д-р техн. наук, професор.
Затверджено на засіданні кафедри теплотехніки,
протокол № 1 від “ 9 " вересня 2004 р.
Розрахунок теплообмінного апарату.
Т 38 Методичні вказівки до виконання курсової роботи.
Уклад.: Е.С.Малкін, І.Е.Фуртат - К.:КНУБА, 2004.- 12с.
Наведені дані для виконання курсової роботи і методика її виконання. Містяться необхідні довідкові відомості.
Призначені для студентів спеціальності 7.092108 "Теплогазопостачання і вентиляція" для використання при виконані курсової роботи.
Курсова робота з конструктивного розрахунку теплообмінного апарату рекуперативного типу виконується в кінці вивчення курсу „Тепломасообмін”. Мета її – поглибити знання з теорії передачі теплоти, практично застосувати їх до теплових і гідромеханічних розрахунків теплообмінних апаратів, а також придбати навички компонування теплообмінних апаратів.
Тепловий і гідромеханічний розрахунки тісно пов’язані з конструкцією теплообмінного апарату, тому вони повинні здійснюватися одночасно з компонуванням апарату.
Курсова робота оформлюється на стандартних аркушах (210×297 мм). В ній слід навести розрахункові формули, детальні обчислення з посиланням на джерела величин, що входять у рівняння, і кінцевий результат.
Вихідні дані на роботу вибирають з табл. 1 за двома останніми цифрами номеру залікової книжки: за передостанньою – перша половина завдання, а за останньою – друга. На першій сторінці курсової роботи слід привести вихідні дані та вказати мету і задачі виконання курсової роботи.
Курсова робота повинна бути виконана і захищена у встановлений за графіком термін.
Конструктивний розрахунок теплообмінного апарату
Задача конструктивного розрахунку – визначити при заданій тепловій потужності геометричні розміри теплообмінника.
Розрахунок виконується за допомогою системи трьох рівнянь: двох рівнянь теплового балансу для гарячого і холодного теплоносіїв та рівняння теплопередачі:
де
Q – теплова потужність теплообмінника,
Вт; с1
і с2
– масові теплоємності першого та другого
теплоносіїв відповідно, Дж/(кг
∙оС);
t1,
t1
– температури першого теплоносія на
вході і виході, оС;
t2,
t2
– температури другого теплоносія на
вході і виході, оС;
k – коефіцієнт теплопередачі, Вт/(м2∙
оС);
– середньо логарифмічний температурний
напір, оС,
F – площа поверхні теплообміну, м2.
З одного з рівнянь теплового балансу визначається теплова потужність теплообмінника, знаходиться коефіцієнт теплопередачі, як величина зворотна до суми термічних опорів процесам переносу теплоти, визначається середньо логарифмічний температурний напір і, нарешті, з рівняння теплопередачі обчислюється площа поверхні теплообміну.
Фізичні властивості теплоносіїв знаходяться за додатками 1– 3. Коефіцієнт теплопровідності матеріалу корпусу теплообмінника – за додатком 5.
Конструктивний розрахунок рекуперативного теплообмінного апарату виконується в такій послідовності.
Згідно із завданням (табл. 1) в залежності від роду теплоносіїв обирається напрям їх відносної течії: „вода – вода” – протитечія (як найбільш ефективна); „пара – вода” – прямотечія (при фазових переходах напрямок руху значення не має); „повітря – вода” – перехресна течія.
Задаємось температурою першого теплоносія на виході: для прямотечії –
(але в нашому випадку, оскільки гарячий теплоносій пара, що конденсується, – його температура є сталою
); для протитечії –
;для перехресної течії – .
Визначаємо фізичні властивості теплоносіїв при їх середніх температурах (
): густини 1 і 2, теплоємності с1 і с2, коефіцієнти теплопровідності 1 і 2, коефіцієнти кінематичної в’язкості 1 і 2 та числа Прандтля Pr1 і Pr2.
З рівняння теплового балансу для другого (холодного) теплоносія визначаємо теплову потужність теплообмінника, Вт:
З рівняння теплового балансу для першого (гарячого) теплоносія визначаємо його масові витрати, кг/с:
для
води і повітря
для
пари
,
де r – питома теплота пароутворення, Дж/кг.
Задаємось швидкостями теплоносіїв w1 і w2, обираючи їх таким чином, щоб вони забезпечували турбулентний режим руху теплоносіїв і не приводили до надто великих гідравлічних опорів: швидкість руху води приймають 1 2 м/с; швидкість парових і газових середовищ – 10 30 м/с.
Визначаємо кількість труб N2 в одному ході теплообмінного апарату по холодному теплоносію, який рухається всередині труб
,
де d1 – внутрішній діаметр труби.
Якщо кількість труб не є цілим числом, приймаємо найближче ціле і уточнюємо швидкість руху теплоносія
Задаємось робочою довжиною труб в теплообмінному апараті: „рідина – рідина” і „пара – рідина” – 2 4 м; „газ – рідина” – 0,5 1,6 м.
Знаходимо габарити каналів, по яких тече гарячий теплоносій:
де S1 – живий переріз каналу.
Також знаходимо еквівалентні діаметри:
де u – змочений периметр.
Тоді для варіанту теплообмінника „труба в трубі” (розповсюджений для теплоносіїв „рідина – рідина”) маємо:
тобто
,
де d2 – зовнішній діаметр внутрішньої труби; D – внутрішній діаметр зовнішньої труби.
В цьому випадку еквівалентний діаметр
.
Для багатоходового по трубному простору теплообмінника („пара – вода”):
тобто
.
В цьому випадку еквівалентний діаметр
.
Для теплообмінника перехресного току („газ – рідина”) знаходимо поперечний крок пучка (в найбільш тісному ряду):
,
тобто
,
де n – кількість труб в найтіснішому ряду; l – робоча довжина труби; s1 – поперечний крок пучка.
В цьому випадку еквівалентний діаметр
.