
- •Системный анализ и моделирование процессов в техносфере
- •1.1. Понятие системы. Базовые категории систем
- •1.2. Классификация систем
- •1.3. Общее представление о системном анализе
- •1.4. Принципы системного анализа
- •2.1. Этапы анализа и синтеза
- •2.2. Понятие о структурном анализе
- •2.3. Методы декомпозиции
- •2.4. Требования, предъявляемые к декомпозиции
- •2.5. Алгоритм декомпозиции
- •2.5. Программно-целевой подход к решению системных задач
- •1. Область применения и этапы программно-целевого подхода
- •2. Дерево целей
- •3.1. Агрегирование системы и эмерджентность
- •3.2. Виды связей в системе
- •Связи взаимодействия (координации):
- •Связи преобразования:
- •3.3. Виды агрегирования
- •4.1. Общие свойства процесса принятия решений
- •4.2. Участники процесса принятия решения
- •4.3. Схема ппр
- •4.4. Формулирование проблемы
- •4.5. Определение целей
- •4.6. Генерирование альтернатив
- •4.7. Формирование критериев
- •4.8. Физиология принятия решений
- •4.9. Виды и особенности задач принятия решений
- •4.10. Формализация принятия решений
- •Лекция 5. Информационное обеспечение ппр
- •5.1. Понятие информации
- •5.2. Информационная структура процесса принятия решений
- •6.1. Особенности группового выбора
- •6.2. Экспертные методы выбора
- •6.3. Методы типа мозговой атаки или коллективной генерации идей
- •6.4. Методы типа сценариев
- •6.5. Методы типа «Делфи»
- •6.6. Методы типа дерева целей
- •6.7. Морфологические методы
- •7.1 Основные положения теории управления
- •7.2 Аксиомы теории управления
- •7.3 Модели основных функций организационно-технического управления
- •7.4 Описание функций управления
- •Лекция 8. Понятие и классификация моделей
- •8.1 Понятие модели, моделирования
- •8.2 Познавательные и прагматические модели
- •8.3 Статические и динамические модели
- •8.4 Классификация моделей по способу воплощения
- •8.5 Место математического моделирования в системных исследованиях
- •8.6 Типы и виды математических моделей
- •8.7 Процесс построения математической модели
- •8.8 Структура моделирования происшествий в техносфере
- •9.1 Конфликт ‒ предмет рассмотрения теории игр
- •9.2 Понятие игры. Классификация игр. Формальное представление игр
- •9.3 Определение бескоалиционной игры
- •9.4 Приемлемые ситуации и ситуации равновесия
- •9.5 Примеры игровых задач
- •10.1 Граф и его виды
- •10.2 Задача о кратчайшем пути
- •10.3 Задача о максимальном потоке
- •11.1 Поверхность отклика
- •11.2 Этапы планирования эксперимента
- •11.3 Обработка и анализ результатов моделирования
- •12.1 Полный факторный эксперимент
- •12.2 Дробный факторный эксперимент
- •12.3 Метод наименьших квадратов
- •13.1 Основная цель кластерного анализа
- •13.2 Объединение (древовидная кластеризация)
- •13.3 Двувходовое объединение
- •13.4 Метод k средних
- •13.5 Алгоритм нечеткой кластеризации
- •14.1 Понятие когнитивного моделирования
- •14.2 Подсистема представления субъективной информации
- •14.3 Подсистема извлечения предпочтений эксперта
- •14.4 Подсистема обработки
- •14.5 Подсистема представления результатов моделирования
- •14.6 Подсистема поддержки аналитической деятельности эксперта
- •14.7 Моделирование бизнес процессов на основе bpmn-диаграмм
- •14.8 Метод анализа иерархий (маи): введение
- •14.9 Основные принципы маи
- •1. Принцип идентичности и декомпозиции
- •2. Принцип дискриминации и сравнительных суждений
- •3. Принцип синтеза
- •14.10 Общая оценка маи как метода принятия решений
- •15.1 Общий ход решения задачи на основе метода конечных элементов
- •15.2 Сети одномерных конечных элементов
- •15.3 Виды конечных элементов
- •16.1 Основные понятия
- •16.2 Приближенное решение оду при заданных начальных условиях
- •16.3 Метод Эйлера и его модификации
- •16.4 Метод Рунге-Кутта
- •16.5 Приближенное решение ду n-го порядка при заданных начальных условиях
- •16.6 Приближенное решение ду при заданных граничных условиях (краевых задач)
- •16.6.1 Метод начальных параметров
- •16.6.2 Редукция к задаче Коши для линейного ду второго порядка
- •17.1 Основные понятия
- •17.2 Типы элементов
- •17.3 Источники энергии и преобразователи. Аналоги топологических уравнений
- •17.4 Метод получения топологических уравнений
- •18.1 Свойства задач принятия решения со многими критериями
- •18.2. Формирование множества критериев
- •18.3 Методология решения многокритериальных задач
- •18.4 Технологии отыскания эффективных решений
- •18.5 Методы принятия решения при нескольких критериях
11.2 Этапы планирования эксперимента
Общая схема планирования экспериментов для решения экстремальных задач состоит из следующих этапов:
1) постановка задачи;
2) выбор параметра оптимизации;
3) выбор факторов;
4) составление линейного плана;
5) реализация линейного плана и построение линейной модели;
6) поиск области экстремума;
7) описание области экстремума;
8) интерпретация результатов.
Постановка задачи. Решение любой задачи начинается с ее формулировки. При этом необходимо иметь ясное, четкое и вполне однозначное представление о цели работы. Желательно, чтобы эта цель была сформулирована количественно, так как планирование экспериментов связано прежде всего с установлением количественных связей между входными и выходными параметрами изучаемой системы. Разумеется, объект обследования должен быть управляемым.
Выбор параметра оптимизации. Одним из наиболее ответственных этапов является выбор параметра оптимизации. Он должен быть однозначным, характеризоваться числами, действительно определять оптимум. Надо стремиться к тому, чтобы параметр был только один, имел ясный физический смысл и оценивался с максимальной статистической эффективностью (последнее позволяет сократить до минимума число параллельных опытов).
Простейший случай имеет место, когда заранее известен и сам параметр, и то его значение, к которому следует стремиться. При этом иногда приходится изменять вид параметра (например, переходить от его натуральных значений к логарифмам, обратным величинам и пр.). Если значение параметра, к которому следует стремиться, неизвестно, все же следует пытаться установить ограничения его величины хотя бы с одной стороны.
Иногда параметр оптимизации приходится изменять из-за технических трудностей, связанных, например, с отсутствием необходимых методик или достоверных методов оценки. В этих условиях можно применять параметры, дающие косвенные оценки, но поиск экстремума становится во многом интуитивным, а интерпретация результатов усложняется.
Часто возникают трудности в количественной оценке параметра оптимизации. Тогда можно использовать субъективные ранговые параметры, такие, как сорт, балл, класс и др. Некоторые методы планирования экспериментов вообще не требуют количественных оценок параметра оптимизации.
Выбор факторов. Не менее сложен этап выбора факторов, влияющих на изменение параметра оптимизации. Если при постановке задачи пропустить какой-нибудь сильно влияющий фактор, то вся работа окажется бесполезной. Поэтому при планировании экспериментов необходимо включать в план исследования все факторы, которые могут влиять на параметр оптимизации. Часто выбранных факторов оказывается очень много; если число их превышает 10, то возникает задача отсеивания незначимых факторов.
Факторы, которые по тем или иным причинам невозможно учесть в эксперименте, необходимо в течение всех опытов стабилизировать на постоянных уровнях.
Важным требованием, предъявляемым к факторам, является невозможность их взаимозаменяемости. Взаимозаменяемость не следует допускать даже для двух любых факторов из общей совокупности.
Выбирая факторы, рекомендуется учитывать область, ограничивающую их возможное варьирование. Желательно, чтобы факторы имели количественную оценку, хотя планирование экспериментов возможно, когда некоторые факторы представлены качественно.
После выбора факторов для каждого из них устанавливают основной уровень и интервалы варьирования. Последние следует выбирать таким образом, чтобы их величина не превышала удвоенной среднеквадратичной ошибки в определении данного фактора.
Составление линейного плана и определение коэффициентов регрессии производят по правилам, изложенным в первых двух разделах данной главы.
Определение доверительных интервалов коэффициентов регрессии. Если проводятся повторные серии опытов или осуществляется несколько прогонов модели на компьютере, то возникает задача статистической оценки коэффициентов регрессии. После определения таких коэффициентов следует прежде всего установить их статистическую значимость. С этой целью проверяют гипотезу об однородности выборочных дисперсий и вычисляют доверительные интервалы коэффициентов регрессии.
Статистический анализ уравнения регрессии. После вычисления коэффициентов регрессии и проверки их значимости проводят статистический анализ уравнения регрессии. С этой целью проверяют гипотезу об адекватности данного уравнения, т. е. ищут ответ на вопрос, соответствует ли полученное линейное уравнение изучаемому явлению или необходима более сложная модель.
Количественной оценкой адекватности уравнения регрессии является дисперсия неадекватности, характеризующая квадрат отклонений экспериментальных значений у от теоретических. Гипотезу адекватности обычно проверяют с помощью критерия Фишера, но возможно использование других критериев.
Адекватность линейного уравнения можно проверить и другим способом. Свободный член уравнения регрессии bо является, по сути дела, оценкой результата опыта на основном уровне, когда все остальные факторы исключены. Поэтому, сделав соответствующий опыт, можно сравнить его результат с величиной свободного члена, т.е. проверить гипотезу о равенстве нулю суммы коэффициентов при квадратичных членах (нуль-гипотезу). Нуль-гипотеза может быть принята, если разность |b0—у0| не превышает среднеквадратической ошибки эксперимента. Значимость этого различия иногда проверяют сопоставлением с критерием Стьюдента.
Выбор факторов. При проведении эксперимента факторы могут быть управляемыми и неуправляемыми, наблюдаемыми и ненаблюдаемыми, изучаемыми и неизучаемыми, количественными и качественными, фиксированными и случайными.
Фактор является управляемым, если его уровни назначаются лицом, проводящим эксперимент, в соответствии с задачами исследования. В процессе эксперимента все управляемые факторы должны поддерживаться на заданном уровне или изменяться в соответствии с заданной программой.
Не всяким наблюдаемым (т.е. фиксируемым в процессе эксперимента) фактором можно управлять. Такие наблюдаемые, но не управляемые факторы получили название сопутствующих. К ним относятся, в частности, воздействия внешней среды. Обычно сопутствующих факторов бывает довольно много, поэтому рационально учитывать влияние лишь тех из них, которые наиболее существенно воздействуют на результаты эксперимента.
После выбора факторов для каждого из них следует определить область, ограничивающую их возможное варьирование, и назначить основной уровень. Если, например, по условиям эксперимента нас интересует диапазон температуры воды от 20 до 60°С, то основной уровень (для середины интервала) составит 40°, нижний уровень 20°, верхний уровень 60°С. Разница значений между верхним и нижним уровнями фактора не может быть больше физически возможной. Например, для температуры обычной воды при нормальных условиях эта разность не может превысить 100°С. При этом интервал варьирования не должен быть меньше ошибки фиксирования уровня фактора, иначе верхний и нижний уровни окажутся Факторы, которые по тем или иным причинам невозможно учесть в эксперименте, необходимо во всех опытах стабилизировать на постоянных уровнях.