
- •Системный анализ и моделирование процессов в техносфере
- •1.1. Понятие системы. Базовые категории систем
- •1.2. Классификация систем
- •1.3. Общее представление о системном анализе
- •1.4. Принципы системного анализа
- •2.1. Этапы анализа и синтеза
- •2.2. Понятие о структурном анализе
- •2.3. Методы декомпозиции
- •2.4. Требования, предъявляемые к декомпозиции
- •2.5. Алгоритм декомпозиции
- •2.5. Программно-целевой подход к решению системных задач
- •1. Область применения и этапы программно-целевого подхода
- •2. Дерево целей
- •3.1. Агрегирование системы и эмерджентность
- •3.2. Виды связей в системе
- •Связи взаимодействия (координации):
- •Связи преобразования:
- •3.3. Виды агрегирования
- •4.1. Общие свойства процесса принятия решений
- •4.2. Участники процесса принятия решения
- •4.3. Схема ппр
- •4.4. Формулирование проблемы
- •4.5. Определение целей
- •4.6. Генерирование альтернатив
- •4.7. Формирование критериев
- •4.8. Физиология принятия решений
- •4.9. Виды и особенности задач принятия решений
- •4.10. Формализация принятия решений
- •Лекция 5. Информационное обеспечение ппр
- •5.1. Понятие информации
- •5.2. Информационная структура процесса принятия решений
- •6.1. Особенности группового выбора
- •6.2. Экспертные методы выбора
- •6.3. Методы типа мозговой атаки или коллективной генерации идей
- •6.4. Методы типа сценариев
- •6.5. Методы типа «Делфи»
- •6.6. Методы типа дерева целей
- •6.7. Морфологические методы
- •7.1 Основные положения теории управления
- •7.2 Аксиомы теории управления
- •7.3 Модели основных функций организационно-технического управления
- •7.4 Описание функций управления
- •Лекция 8. Понятие и классификация моделей
- •8.1 Понятие модели, моделирования
- •8.2 Познавательные и прагматические модели
- •8.3 Статические и динамические модели
- •8.4 Классификация моделей по способу воплощения
- •8.5 Место математического моделирования в системных исследованиях
- •8.6 Типы и виды математических моделей
- •8.7 Процесс построения математической модели
- •8.8 Структура моделирования происшествий в техносфере
- •9.1 Конфликт ‒ предмет рассмотрения теории игр
- •9.2 Понятие игры. Классификация игр. Формальное представление игр
- •9.3 Определение бескоалиционной игры
- •9.4 Приемлемые ситуации и ситуации равновесия
- •9.5 Примеры игровых задач
- •10.1 Граф и его виды
- •10.2 Задача о кратчайшем пути
- •10.3 Задача о максимальном потоке
- •11.1 Поверхность отклика
- •11.2 Этапы планирования эксперимента
- •11.3 Обработка и анализ результатов моделирования
- •12.1 Полный факторный эксперимент
- •12.2 Дробный факторный эксперимент
- •12.3 Метод наименьших квадратов
- •13.1 Основная цель кластерного анализа
- •13.2 Объединение (древовидная кластеризация)
- •13.3 Двувходовое объединение
- •13.4 Метод k средних
- •13.5 Алгоритм нечеткой кластеризации
- •14.1 Понятие когнитивного моделирования
- •14.2 Подсистема представления субъективной информации
- •14.3 Подсистема извлечения предпочтений эксперта
- •14.4 Подсистема обработки
- •14.5 Подсистема представления результатов моделирования
- •14.6 Подсистема поддержки аналитической деятельности эксперта
- •14.7 Моделирование бизнес процессов на основе bpmn-диаграмм
- •14.8 Метод анализа иерархий (маи): введение
- •14.9 Основные принципы маи
- •1. Принцип идентичности и декомпозиции
- •2. Принцип дискриминации и сравнительных суждений
- •3. Принцип синтеза
- •14.10 Общая оценка маи как метода принятия решений
- •15.1 Общий ход решения задачи на основе метода конечных элементов
- •15.2 Сети одномерных конечных элементов
- •15.3 Виды конечных элементов
- •16.1 Основные понятия
- •16.2 Приближенное решение оду при заданных начальных условиях
- •16.3 Метод Эйлера и его модификации
- •16.4 Метод Рунге-Кутта
- •16.5 Приближенное решение ду n-го порядка при заданных начальных условиях
- •16.6 Приближенное решение ду при заданных граничных условиях (краевых задач)
- •16.6.1 Метод начальных параметров
- •16.6.2 Редукция к задаче Коши для линейного ду второго порядка
- •17.1 Основные понятия
- •17.2 Типы элементов
- •17.3 Источники энергии и преобразователи. Аналоги топологических уравнений
- •17.4 Метод получения топологических уравнений
- •18.1 Свойства задач принятия решения со многими критериями
- •18.2. Формирование множества критериев
- •18.3 Методология решения многокритериальных задач
- •18.4 Технологии отыскания эффективных решений
- •18.5 Методы принятия решения при нескольких критериях
8.8 Структура моделирования происшествий в техносфере
1. Содержательная постановка задачи
1.1 Разработать комплекс смысловых и знаковых моделей, позволяющих установить основные закономерности возникновения техногенных происшествий и количественно оценить меру возможности их появления.
1.2. Модели должны: а) выявлять условия появления и предупреждения происшествий; б) вычислять вероятность их появления.
1.3. Исходные данные: параметры производственного объекта Ч (человека), М (машины) и С (среды), проводимых на нем технологических процессов Т, а также статистические данные по состоянию этих компонентов и их аналогов – Q().
2. Концептуальная постановка задачи
2.1. Исходные гипотезы и предпосылки относительно моделируемого явления:
а) аварийность и травматизм на производстве могут быть описаны в соответствии с канонами теории случайных процессов в сложных системах;
б) объектом моделирования должен быть случайный процесс, возникающий на производственном объекте и завершающийся появлением происшествий (аварий или несчастных случаев);
в) поток таких происшествий допустимо считать простейшим, т. е. удовлетворяющим условиям стационарности, ординарности и отсутствия последействия;
г) каждое происшествие может возникать при выполнении конкретных технологических операций, из-за случайно возникших ошибок персонала, отказов техники и нерасчетных внешних воздействий.
2.2. С учетом вышеизложенного можно сформулировать концептуальную постановку задачи моделирования следующим образом:
а) представить аварийность и травматизм в виде процесса просеивания потока заявок (t) на конкретные технологические операции в выходной поток случайных происшествий с вероятностью Q(t) их появления в момент времени t;
б) изобразить данный процесс в виде потоков( графа, интерпретирующего возникновение причинной цепи происшествий из отдельных предпосылок.
3. Проверка и качественный анализ семантической модели
3.1. Проверить обоснованность гипотез относительно природы потоков моделируемых событий и необходимости учета факторов внешней среды:
а) возможность представления простейшим потоком также и входного потока требований на проведение технологических операций;
б) правомерность допущения о несущественности предпосылок к происшествию, обусловленных неблагоприятными внешними воздействиями;
3.2. Провести качественный анализ потокового графа с целью ответа на следующие вопросы:
а) какие производственные процессы можно считать относительно «безопасными»?
б) какое технологическое и производственное оборудование следует рассматривать более «безопасным» в эксплуатации.
4. Математическая постановка и выбор метода решения задачи
4.1. Сформулировать задачу моделирования в виде системы алгебраических уравнений и проверить корректность математических соотношений, полученных каким-либо образом:
а) с учетом гипотезы о простейшем характере потока требований на выполнение технологических операций использовать свойство его инвариантности после разрежения за счет исключения событий для получения зависимостей
Q(t) = f (Ч, М, С, Т, t)
4.2. Разработать процедуру априорной оценки каждого из пара метров аналитической модели и проверить корректность всех по лученных математических соотношений с применением всех соответствующих правил.
Практическая реализация рассмотренного здесь подхода может способствовать совершенствованию безопасности техносферы в целом.
Лекция 9. Теория игр