
- •Введение
- •1. Схема передачи и исходные данные для проектирования
- •2. Назначение привода и его особенности
- •3. Определение к.П.Д. Привода
- •4. Выбор электродвигателя
- •Электродвигателей единой серии 4а
- •5. Определение передаточного числа привода и распределение его между ступенями
- •6. Определение скоростей, мощностей и крутящих моментов на всех валах
- •Проектный и проверочный расчёт передач Методика расчета прямозубых цилиндрических передач
- •Методика расчета конических прямозубых передач
- •Расчёт закрытых червячных передач
- •Передаточного отношения червячной передачи
- •8. Расчёт ремённой (цепной) передачи Расчёт цепных передач
- •Размеры в мм (гост 13568-97)
- •Расчет плоскоременных передач
- •Расчет клиноремённых передач
- •Клиновым ремнём, по гост 1284.1-89-1284.3-89
- •Привода по гост 1284.1-89-1284.3-89
- •По гост 1284-1-89-1284.3-89
- •(Гост 20889-88)
- •9. Предварительный расчёт валов (только на кручение)
- •10. Компоновка редуктора
- •11. Основной расчёт валов с построением эпюр изгибающих и крутящих моментов
- •12. Проверочный расчёт валов
- •Изготовления валов
- •13. Расчет вала на жёсткость
- •14. Определение суммарных опорных реакций и расчёт подшипников Расчет подшипников качения
- •Подшипников (гост 8338-75)
- •Однорядных подшипников (гост 831-75)
- •15. Выбор и проверка расчётом шпоночных соединений
- •16. Определение конструктивных элементов редуктора по эмпирическим формулам
- •17. Тепловой расчёт червячной передачи
- •18. Выбор систем смазки и смазочного вещества для редуктора и опор
- •19. Выбор и расчёт муфт
- •20. Выбор посадок для деталей привода
- •21. Краткое описание конструкции с обоснованием основных конструктивных решений и параметров
- •22. Краткое описание технологического процесса сборки редуктора
- •23. Краткое описание технологического процесса изготовления одной детали
- •Литература
- •2. Двигатели трёхфазные асинхронные серии 4а (исполнения 1м 1081, 1м 1082) по гост 19523-81
- •3. Двигатели трёхфазные асинхронные серии 4а (исполнения 1м 3081, 1м 3011, 1м 3031) по гост 19523-81
- •Условные обозначения материалов и стандартных изделий элементов конструкций редукторов. Материалы и крепёжные элементы
- •Пружинные шайбы
- •Крышки подшипников
- •Подшипники
- •Элементы открытых передач
- •Электродвигатель
- •Содержание
- •1 Лист – сборочный чертёж редуктора.
- •2 Лист – рабочие чертежи деталей редуктора.
11. Основной расчёт валов с построением эпюр изгибающих и крутящих моментов
1. Составляется расчетная схема, где вал рассматривается как балка, лежащая на шарнирных опорах, расстояния между опорами и силами берутся из компоновки редуктора.
2. Определяется величина и направление сил и моментов, действующих на вал (из соответствующих расчетов зубчатых, червячных, ременных или цепных передач).
3. Усилия, изгибающие вал, раскладываются на горизонтальные и вертикальные составляющие, с вычерчиванием расчетных схем для каждой плоскости (рис. 2).
4. Определяются реакции в опорах методами сопротивления материалов и строятся эпюры изгибающих моментов в каждой из двух взаимно перпендикулярных плоскостей.
5. Изгибающие моменты, полученные для каждой из этих плоскостей, складываются геометрически по формуле:
,
(160)
где Мu – результирующий изгибающий момент, Нм;
Мuв, Мuг – изгибающие моменты в горизонтальной и вертикальной плоскостях, Нм.
6. Строится эпюра результирующих моментов Мu.
Рис. 4. Схема нагрузок ведущего вала косозубого цилиндрического редуктора
7. Строится эпюра крутящих моментов Т.
8. По характеру эпюр определяются места опасных сечений (наибольшие значения моментов). Для этих мест вычисляют приведенные (эквивалентные) моменты (по теории наибольших касательных напряжений):
,
(161)
Для опасного сечения вала определяется диаметр
,
мм (162)
где – допускаемое напряжение при основном расчете валов для сталей 35, 40, 45 равно 50…60 Н/мм2.
Полученное значение диаметра вала округляется по ГОСТу 6636-69 в меньшую сторону (смотрим предварительный расчёт валов).
12. Проверочный расчёт валов
Проверочный (уточненный) расчет вала производят в опасных сечениях, где действует максимальный изгибающий момент или имеются концентраторы напряжений (шпоночные канавки, галтели отверстия и т.д.). Расчет обычно производят в форме проверки коэффициента запаса прочности. С точки зрения обеспечения прочности вала, достаточно иметь коэффициент запаса прочности S порядка 1,7. Общий коэффициент запаса прочности определяют из выражения:
,
(163)
где S – коэффициент запаса прочности по нормальным напряжениям;
Sτ – коэффициент запаса прочности по касательным напряжениям (определяется по формуле).
,
(164)
где -1 – предел выносливости материала вала при симметричном цикле изгиба (определяется по формуле для углеродистой стали, МПа);
– предел прочности b
(определяется по таблице 34).
К –
эффективный коэффициент концентрации
нормальных напряжений для шпоночной
канавки,
– для галтелей и вытачек;
– масштабный фактор (принимается из таблицы 35);
– коэффициент упрочнения, вводный для валов с поверхностным упрочнением: полированная поверхность =1, шлифованная поверхность =0,95…0,97, поверхность чисто обработанная резцом =0,88…0,92;
– амплитуда цикла нормальных напряжений.
m – среднее значение цикла нормальных напряжений;
Если вал не испытывает осевой нагрузки (если ее действием пренебрегают), можно считать, что цикл изменения нормальных напряжений симметричный и m=0.
– коэффициент, характеризующий чувствительность материала к асимметрии напряжений для среднеуглеродистых сталей, =0,05.
Можно считать, что
нормальное напряжение изгиба в
рассчитываемом сечении.
Таблица 34 - Механические свойства стали, применяемой для