- •Scan Pirat
- •Глава IV. Перемещение и сжатие газов (компрессорные машины)
- •Общие сведения . . .
- •Сравнение и области применения компрессорных машин различных
- •Глава V. Разделение неоднородных систем 176
- •Общие сведения 186
- •Общие сведения . 227
- •Глава VI. Перемешивание в жидких средах 246
- •Общие сведения 246
- •Глава VII. Основы теплопередачи в химической аппаратуре 260
- •Общие сведения 260
- •Глава VIII. Нагревание, охлаждение и конденсация 310
- •Общие сведения . 310
- •Нагревание газообразными высокотемпературными теплоносителями
- •Общие сведения . 347
- •Общие сведения 382
- •Общие сведения 434
- •Глава XV. Сушка . . .Ч 583
- •Глава XVI. Кристаллизация 632
- •Глава XVII. Искусственное охлаждение 646
- •Циклы, основанные на сочетании дросселирования и расширения газа
- •Глава XVIII. Измельчение твердых материалов 679
- •Общие сведения 679
- •Крупное дробление 684
- •Тонкое измельчение n 693
- •Глава XIX. Классификация и сортировка материалов 703
- •Глава XX. Смешение твердых материалов 711
- •2. Возникновение и развитие науки о процессах и аппаратах
- •Возникновение и развитие науки о процессах и аппаратах
- •3. Классификация основных процессов
- •4. Общие принципы анализа и расчета процессов и аппаратов
- •Общие принципы анализа и расчета процессов и аппаратов
- •Основные определения
- •Некоторые физические свойства жидкостей
- •2. Некоторые физические свойства жидкостей
- •Некоторые физические свойства жидкостей
- •Некоторые физические свойства жидкостей
- •Дифференциальные уравнения равновесия Эйлера
- •Основное уравнение гидростатики
- •Основное уравнение гидростатики
- •Основные характеристики движения жидкостей
- •Основные характеристики движения жидкостей
- •6. Основные характеристики движения жидкостей
- •6. Основные характеристики движения жидкостей
- •6. Основные характеристики движения жидкостей
- •6. Основные характеристики движения жидкостей
- •48 Гл. II. Основы гидравлики. Общие вопросы прикладной гидравлика
- •Уравнение неразрывности (сплошности) потока
- •8. Дифференциальные уравнения движения Эйлера
- •9. Дифференциальные уравнения движения Навье—Стокса
- •9., Дифференциальные уравнения движения Навье—Стокса
- •10. Уравнение Бернулли
- •10. Уравнение Бернулли
- •Некоторые практические приложения уравнения Бернулли
- •11. Некоторые практические-приложения уравнения Бернулли
- •12« Основы теории подобия и анализа размерностей.
- •12. Основы теории подобая а анализа размерностей. Принципы моделирования 71
- •12. Основы теории подобия и анализа размерностей. Принципы моделирования п
- •Гидродинамическое подобие
- •13. Гидродинамическое подобие
- •13. Гидродинамическое подобия
- •13. Гидродинамическое подобие
- •Гидравлические сопротивления в трубопроводах
- •14. Гидравлические сопротивления в трубопроводах
- •14. Гидравлические сопротивления в трубопроводах
- •Течение неньютоновских жидкостей
- •Закономерности движения неньютоновских жидкостей имеют ряд особенностей. - Для обычных, или ньютоновских, жидкостей зависимость между напряжением сдвига т
- •Неньютоновские жидкости можно разделить на три большие группы. К первой группе относятся так называемые вязкие, или стационарные, не- ньютоновские жидкости. Для этих
- •Времени. По виду данной функции (кривой тече- нии) различают следующие разновидности жид- костей этой группы.
- •Называемый пластическо
- •Зависимость (11,105) изображается на рис. 11-26 линией 2
- •15. Течение неньютоновских жидкостей
- •Ростях сдвига; в результате величины и х становятся пропорциональными друг другу
- •Расчет диаметра трубопроводов
- •17. Движение тел в жидкостях
- •Движение тел в жидкостях
- •17. Движение тел в жидкостях
- •18. Движение жидкостей через неподвижные зернистые и пористые слои 101
- •Движение жидкостей через неподвижные зернистые и пористые слои
- •18. Движение жидкостей через неподвижные зернистые и пористые слои 103
- •Для полидисперсных зернистых слоев расчетный диаметр (1 вычисляют из соотношения
- •18. Движение жидкостей через неподвижные зернистые и пористые слои 105
- •19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 107
- •19. Гидродинамика кипящих (псевдоожиженных) зернистых слоев 109
- •20. Элементы гидродинамики двухфазных потоков
- •Элементы гидродинамики двухфазных потоков
- •20. Элементы гидродинамики двухфазных потоков
- •20. Элементы гидродинамики двухфазных потоков
- •Структура потоков и распределение времени пребывания жидкости в аппаратах
- •Глава III
- •Перемещение жидкостей (насосы)
- •Общие сведения
- •Основные параметры насосов
- •3. Напор насоса. Высота всасывания
- •Центробежные насосы
- •4. Центробежные насосы
- •4. Центробежные насосы
- •4. Центробежные насосы
- •4. Центробежные насосы
- •Поршневые насосы
- •5. Поршневые насосы
- •5. Поршневые насосы
- •Специальные типы поршневых и центробежных насосов
- •Насосы других типов
- •7. Насосы других типов
- •7. Насосы других типов
- •Сравнение и области применения насосов различных типов
- •8. Сравнение и области применения насосов различных типов
- •Глава IV
- •Перемещение и сжатие газов (компрессорные машины)
- •Общие сведения
- •2. Термодинамические основы процесса сжатия газов
- •2.. Термодинамические основы процесса сжатия газов
- •2. Термодинамические основы процесса сжатия газов
- •3. Поршневые компрессоры
- •Поршневые компрессоры
- •3. Поршневые компрессоры
- •3. Поршневые компрессоры
- •3. Поршневые компрессоры
- •4. Ротационные компрессоры и газодувки
- •Ротационные компрессоры и газодувки
- •6. Осевые вентиляторы и компрессоры
- •Осевые вентиляторы и компрессоры
- •Винтовые компрессоры
- •Вакуум-насосы
- •8. Вакуум-насосы
- •Глава V
- •1. Неоднородные системы и методы их разделения
- •Материальный баланс процесса разделения
- •Скорость стесненного осаждения (отстаивания)
- •3. Скорость стесненного осаждения (отстаивания)
- •4. Коагуляция частиц дисперсной фазы
- •Коагуляция частиц дисперсной фазы
- •Отстойники
- •5. Отстойники
- •5. Отстойники
- •Общие сведения
- •6. Общие сведения
- •6. Общие сведения
- •Уравнения фильтрования
- •8. Фильтровальные перегородки
- •Фильтровальные перегородки
- •Устройство фильтров
- •9. Устройство фильтров
- •9. Устройство фильтре*
- •9. Устройство фильтров
- •9. Устройство фильтров
- •9. Устройство фильтров
- •9. Устройство фильтров
- •10. Расчет фильтров
- •9. Устройство фильтров
- •Основные положения
- •12. Центробежная сила и фактор разделения
- •Центробежная сила и фактор разделения
- •Процессы в отстойных центрифугах
- •Процессы в фильтрующих центрифугах
- •Устройство центрифуг
- •16. Расчет центрифуг
- •16. Расчет центрифуг
- •17. Общие сведения
- •17. Общие сведения
- •18. Гравитационная очистка газов
- •2 Камера; 2 — горизонтальные перегородки (полки)! 3 — отражательная перегородка; 4 *- дверцы.
- •Очистка газов под действием инерционных и центробежных сил
- •20. Очистка газов фильтрованием
- •Очистка газов фильтрованием
- •Мокрая очистка газов
- •21. Мокрая очистка газов
- •Электрическая очистка газов
- •22. Электрическая очистка газов
- •22. Электрическая очистка газов
- •23. Коагуляция и укрупнение частиц, отделяемых при газоочистке
- •Коагуляция и укрупнение частиц, отделяемых при газоочистке
- •24. Сравнительные характеристики и выбор газоочистительной аппаратуры 245
- •Глава VI
- •2. Механическое перемешивание
- •2. Механическое перемешивание
- •2. Механическое перемешивание
- •3. Механические перемешивающие устройства
- •3. Механические перемешивающие устройства
- •Пневматическое перемешивание
- •5. Перемешивание в трубопроводах
- •Перемешивание в трубопроводах
- •6. Перемешивание с помощью сопел и насосов
- •2. Тепловые балансы
- •Тепловые балансы
- •Основное уравнение теплопередачи
- •4. Температурное поле и температурный градиент
- •Температурное поле и температурный градиент
- •Передача тепла теплопроводностью
- •5. Передача тепла теплопроводностью
- •5. Передача тепла теплопроводностью
- •Тепловое излучение
- •6. Тепловое излучение
- •6. Тепловое излучение
- •7. Передача тепла конвекцией (конвективный теплообмен)
- •Передача тепла конвекцией (конвективный теплообмен)
- •7. Передача тепла конвекцией (конвективный теплообмен) 277
- •7. Передача тепла конвекцией (конвективный теплообмен) 279
- •8. Опытные данные по теплоотдаче
- •Опытные данные по теплоотдаче
- •8. Опытные данные по теплоотдаче
- •8. Опытные данные по теплоотдаче
- •8. Опытные данные по теплоотдаче
- •8. Опытные данные по теплоотдаче
- •10. Сложная теплоотдача
- •Численные значения коэффициентов теплоотдачи
- •Сложная теплоотдача
- •Теплопередача
- •11. Теплопередача
- •11. Теплопередача
- •11. Теплопередача
- •12., Нестационарный теплообмен
- •12. Нестационарный теплообмен
- •Дгср _ ——-f - j_t -
- •12. Нестационарный теплообмен
- •Глава VIII нагревание, охлаждение и конденсация
- •Общие сведения
- •Нагревание водяным паром
- •Центробежный насос.
- •4. Нагревание топочными газами
- •Нагревание горячей водой
- •Нагревание топочными газами
- •1 Сопло горелки; 2 —- огнеупорная пористая панель; 3 — радиантная часть (змеевик); 4 — конвективная часть (змеевик); 5 — перегреватель; 6 и- дымовая труба.
- •Нагревание высокотемпературными теплоносителями
- •I печь со змеевиком; 2 — теплоиспользующнй аппарат; 3 подъемный трубопровод; 4 — опускной трубопровод; 5 — циркуляционный насос.
- •Нагревание электрическим током
- •Охлаждение до обыкновенных температур
- •Охлаждение до низких температур
- •Конденсация паров
- •Трубчатые теплообменники
- •Змеевиковые теплообменники
- •Пластинчатые теплообменники
- •Оребренные теплообменники
- •16. Теплообменные устройства реакционных аппаратов
- •Конденсаторы смешения
- •Расчет теплообменных аппаратов
- •Расчет конденсаторов паров
- •Глава IX
- •Общие сведения
- •Однокорпусные выпарные установки
- •2. Однокорпусные выпарные установки
- •3. Многокорпусные выпарные установки
- •Многокорпусные выпарные установки
- •3. Многокорпусные выпарные установки
- •Устройство выпарных аппаратов
- •Расчет многокорпусных выпарных аппаратов
- •Общие сведения
- •1. Общие сведения
- •Равновесие при массопередаче
- •Скорость массопередачи
- •3. Скорость массопередачи
- •Движущая сила процессов массопередачи
- •Массопередача с твердой фазой
- •6. Массопередача с твердой фазой
- •Глава XI
- •Равновесие при абсорбции
- •Материальный и тепловой балансы процесса
- •Скорость процесса
- •Устройство абсорбционных аппаратов
- •— Щели.
- •Расчет абсорберов
- •7. Десорбция
- •8. Схемы абсорбционных установок
- •Глава XII
- •Характеристики двухфазных систем жидкость—пар
- •4. Ректификация
- •4. Ректификация
- •Специальные виды перегонки
- •Глава XIII
- •Общие сведения
- •2. Равновесие в системах жидкость—жидкость
- •2. Равновесие в системах жидкость—жидкость
- •2. Равновесие в системах жидкость—жидкость
- •2. Равновесие в системах жидкость—жидкость
- •3. Методы экстракции
- •3. Методы экстракции
- •3. Методы экстракции
- •1/ 2, 8, .... П — ступени.
- •3. Методы экстракции
- •3. Методы экстракции
- •3. Методы экстракции
- •4. Устройство экстракционных аппаратов
- •Ступенчатые экстракторы
- •4. Устройство экстракционных аппаратов
- •4. Устройство экстракционных аппаратов
- •1Л. XIII. Экстракция
- •4. Устройство экстракционных аппаратов
- •5. Расчет экстракционных аппаратов
- •5. Расчет экстракционных аппаратов
- •7. Равновесие и скорость процессов экстракции и растворения
- •Рис, хііі-27. Схема извлечения растворенного вещества из пористого тела и профиль концентраций.
- •Способы экстракции и растворения
- •8. Способы экстракции и растворения
- •Рнс. Хііі-29. Схема противоточной промывки осадка (шлама) на барабанных вакуум-фильтрах:
- •Устройство экстракционных аппаратов
- •9. Устройство экстракционных аппаратов
- •9. Устройство экстракционных аппаратов
- •Расчет экстракционных аппаратов
- •Глава XIV
- •Общие сведения
- •2. Характеристики адсорбентов и их виды
- •Равновесий при адсорбции
- •3. Равновесие при адсорбции
- •Скорость адсорбции
- •4. Скорость адсорбции
- •4. Скорость адсорбции
- •Десорбция
- •5. Десорбция
- •6. Устройство адсорберов и схемы адсорбционных установок
- •6. Устройство адсорберов и схемы адсорбционных установок
- •Расчет адсорберов
- •7. Расчет адсорберов
- •Ионообменные процессы
- •Глава XV
- •Основные параметры влажного газа
- •Равновесие при сушке
- •Материальный и тепловой балансы сушки
- •Определение расходов воздуха и тепла на сушку
- •Варианты процесса сушки
- •Скорость сушки
- •8. Скорость сушки
- •Dwc cftuiP
- •Устройство суЬшлок
- •Конвективные сушилки с неподвижным или движущимся плотным слоем материала
- •Конвективные сушилки с перемешиванием слоя материала
- •Конвективные сушилки со взвешенным слоем материала
- •1 Верхняя камера; 2 — нижняя камера; 3 — раз» рыхлитель.
- •I камера сушилки; 2 — полые плиты.
- •Глава XVI
- •1, Общие сведения
- •Равновесие при кристаллизации
- •Влияние условий кристаллизации на свойства кристаллов
- •Способы кристаллизации
- •Устройство кристаллизаторов
- •I __ труба аппарата; 2 — термоизоляционный кожух; 3 — вентилятор; 4 — труба
- •7. Расчеты кристаллизаторов Материальный баланс кристаллизации
- •Глава XVII искусственное охлаждение
- •Общие сведения
- •Термодинамические основы получения холода
- •Другие методы получения низких температур
- •Компрессионные паровые холодильные машины
- •Абсорбционные холодильные машины
- •Пароводяные эжекторные холодильные машины
- •Циклы с дросселированием газа
- •Циклы с тепловым насосом
- •Сравнение основных циклов глубокого охлаждения
- •Методы разделения газов
- •Механические процессы
- •Глава XVIII измельчение твердых материалов
- •Общие сведения
- •Физико-механические основы измельчения.
- •Щековые дробилки
- •Конусные дробилки
- •Валковые дробилки
- •Ударно-центробежные дробилки
- •Барабанные мельницы
- •Кольцевые мельницы
- •8 Сепаратор Материал
- •Мельницы для сверхтонкого измельчения
- •Глава XIX
- •Классификация и сортировка материалов
- •Грохочение
- •Гидравлическая классификация и воздушная сепарация
- •Глава XX
- •328 Расчет 343
- •Основные процессы и аппараты химической технологии
161
Коэффициент
подачи. Как следует из уравнения (IV,
22), коэффициент подачи Ку
представляет собой отношение объема
V
газа, подаваемого в нагнетательный
трубопровод, но приведенного к условиям
всасывания, к объему 1/п,
описываемому поршнем
Коэффициентом
подачи учитываются все потери
производительности компрессора как
отображаемые, так и не отображаемые на
индикаторной диаграмме. К первым
относятся потери, связанные с уменьшением
полезного объема цилиндра при расширении
газа, находящегося в мертвом
пространстве. Эти потери учитываются
объемным коэффициентом Я„. Ко вторым
относятся потери производительности
путем утечек газа через неплотности в
поршневых кольцах, клапанах, сальниках,
а также за счет расширения всасываемого
газа при соприкосновении его с горячими
стенками цилиндра и смешении с нагретым
газом из мертвого пространства.
Указанные потери учитываются коэффициентом
герметичности А,р
и термическим коэффициентом Кт
соответственно.
Поэтому
коэффициент подачи может быть определен
как произведение трех коэффициентов:-
Ц
= 101ГХТ (1У.23)
Для
современных компрессоров Яг
= 0,95—0,98; = 0,9—0,98.
Объемный
коэффициент. Как указывалось ранее,
объем газа, всасываемого компрессором
Увс,
меньше рабочего объема цилиндра Уп.
Отношение объема газа, всасываемого
компрессором, к рабочему объему цилиндра
называется объемным
коэффициентом
л0
компрессора:
к
= -^ = 4г <1У?4’
У
п Ч?
Обозначим
через х
отношение разности между полным объемом
цилиндра (Уа
—
Уп+е1/п)
и фактически всасываемым объемом газа
(1/вс
= = К'УП)
к объему Уп,
описываемому поршнем:
Процесс
расширения газа в мертвом пространстве
можно считать политропическим с
показателем политропы расширения тр,
несколько меньшим показателя политропы
сжатия ш
(так,, например, для двухатомных газов
можно принять тр
= 1,2). Поэтому
где
*УП
= У0
— Увс
— объем, который занимает газ после
расширения его в мертвом пространстве
от давления р2
до давления рх
(см. рис. ГУ-4).
Из
этого уравнения определим
Подставив
полученный результат в выражение (IV,
24а) для ?.0,
найдем
Таким
образом, объемный коэффициент Я0
компрессора зависит от
относительного
объема мертвого пространства е, степени
сжатия ■—
и
показателя политропы расширения тр
газа, т. е. от конструкции компрессорной
машины и свойств сжимаемого газа.
Производительность
6
А. Г. Касаткин
Уп
бУц Яр Уп
I
п
—
1
3. Поршневые компрессоры
откуда
(IV.24а)
Х0 = 1 + є — х
Рг (®У п) ^ — РііУо — У вс) ^ — Р\ (*У п) Р
ПУ,25)
162
Гл.
IV. Перемещение и сжатие газов
(компрессорные
машины1
компрессора
будет тем больше, чем меньше степень
сжатия и объем мертвого пространства
и чем больше показатель кривой расширения
газа в этом пространстве.
Предел
одноступенчатого сжатия. Как следует
из уравнения (IV, 25), объемный коэффициент
Ко
уменьшается с увеличением степени
сжатия и при некотором ее значении
может стать равным нулю. Степень
вится
равным нулю, называется пределом
сжатия.
При
предельном значении степени сжатия
газ, находящийся в мертвом
пространстве,
расширяясь, занимает весь объем цилиндра.
Всасывание
газа
в цилиндр прекращается и производи-
В
действительности в качестве предельной
принимают значительно меньшую степень
сжатия. При этом считают, что компрессоры,
имеющие объемный коэффициент менее
0,7, практически невыгодны. Соответствующий
этому объемный
предел
степени сжа-
Следующим
ограничением, обусловливающим
сравнительно небольшие степени сжатия
в одноступенчатых компрессорах, является
температура газа после сжатия, которая
не должна быть выше 150—160° С. При более
высоких температурах начинается
выделение летучих из смазочного масла,
которые, соединяясь с сжимаемым газом,
могут образовывать взрывчатые смеси.
можно
вычислить с помощью уравнении (IV, 11) или
(IV, 12). При адиабатическом сжатии
Имеются
такие конструкции компрессоров, в
которых степень сжатия превышает
определяемую по уравнению (IV,28).
Смазка в этом случае осуществляется
впрыскиванием в цилиндр воды, что
обеспечивает также частичное охлаждение
сжимаемого газа.
Практически
степень сжатия при охлаждении цилиндра
не превышает
(за
исключением малых компрессоров, для
которых степень сжатия может быть
повышена до 8) и в среднем составляет
3—4.
Многоступенчатое
сжатие. Многоступенчатое сжатие
применяют для получения высоких давлений
газа. Процесс многоступенчатого сжатия
сжатия
которой
объемный коэффициент компрессора
стано-
Р
И
г
тельность
компрессора становится равной нулю.
Предел
сжатия при политропическом расширении
газа в мертвом пространстве может быть
определен с помощь, уравнения (IV,25) из
условия Х0
— 0:
На
индикаторной диаграмме (рис. 1У-5) линии
сжатия и расширения сливаются в одну
линию; площадь индикаторной диаграммы
и, следовательно, индикаторная мощность
при пределе сжатия равны нулю.
Рис.
1У-5. Индикаторная ли,:- или грамма .
компрессора при пределе сжатия.
(IV,26)
тия
находится
из уравнения
или
(IV,
27)
Предельную
степень сжатия в зависимости от
температуры в конце сжатия
к
(IV,28)