
- •Предисловие
- •Тема 1 «Насосы объемного действия»
- •Вопрос 1.1. Классификация поршневых насосов
- •Вопрос 1.2. Принцип работы поршневого насоса
- •Вопрос 1.3. Закон движения поршня насоса
- •Вопрос 1.4. Средняя подача поршневых насосов всех типов
- •Вопрос 1.5. Коэффициент подачи поршневых насосов, факторы на него влияющие
- •Вопрос 1.6. Графики подачи поршневых насосов
- •Вопрос 1.7. Воздушные колпаки
- •Вопрос 1.8. Работа насоса и индикаторная диаграмма
- •Вопрос 1.9. Мощность и кпд поршневого насоса. Определение мощности привода.
- •Вопрос 1.10. Определение усилий на основные детали поршневых насосов
- •Вопрос 1.11. Конструкция поршневого насоса. Основные узлы и детали насоса.
- •Вопрос 1.12. Эксплуатация поршневых насосов
- •Вопрос 1.13. Регулирование работы поршневого насоса
- •Вопрос 1.14. Роторные насосы
- •Вопрос 1.15. Дозировочные насосы
- •Вопрос 1.16. Смазка узлов приводной части насоса
- •Тема 2 Динамические насосы
- •Вопрос 2.1. Схема и принцип действия центробежного насоса
- •Вопрос 2.2. Основное уравнение центробежного насоса
- •Вопрос 2.3. Действительный напор центробежного
- •Вопрос 2.4. Подача центробежного насоса
- •Вопрос 2.5. Мощность и коэффициент полезного действия центробежного насоса
- •Вопрос 2.6. Уравновешивание осевого давления
- •Вопрос 2.7. Явление кавитации и допустимая высота всасывания
- •Вопрос 2.8. Зависимость подачи, напора и мощности от числа оборотов
- •Вопрос 2.9. Коэффициент быстроходности
- •Вопрос 2.10. Рабочая характеристика центробежного насоса
- •Вопрос 2.11. Определение рабочей характеристики насоса при изменении частоты вращения вала
- •Вопрос 2.12. Обточка рабочих колес по диаметру
- •Вопрос 2.13. Влияние плотности и вязкости перекачиваемой жидкости на работу насоса
- •Вопрос 2.14. Работа центробежного насоса в одинарный трубопровод
- •Вопрос 2.15. Работа насоса в разветвленный трубопровод
- •Вопрос 2.16. Параллельная работа центробежных насосов
- •Вопрос 2.17. Последовательная работа центробежных насосов
- •Вопрос 2.18. Регулирование параметров работы центробежного насоса
- •Вопрос 2.19. Эксплуатация центробежных насосов
- •Вопрос 2.20. Конструктивные особенности центробежных насосов
- •Вопрос 2.21. Конструкция центробежного насоса серии цнс -180.
- •Вопрос 2.22. Назначение, схема и устройство насосного блока бкнс
- •Вопрос 2.23. Схема системы ппд с использованием погружного центробежного электронасоса
- •Тема 3 компрессоры
- •Вопрос 3.1. Принцип работы и термодинамические условия работы поршневого компрессора
- •Вопрос 3.2. Индикаторная диаграмма идеального рабочего процесса компрессора
- •Вопрос 3.3. Работа на сжатие единицы массы газа в компрессоре
- •Вопрос 3.4. Индикаторная диаграмма реального рабочего процесса компрессора
- •Вопрос 3.5. Подача поршневого компрессора, коэффициент подачи
- •Вопрос 3.6. Многоступенчатое сжатие
- •Вопрос 3.7. Мощность и коэффициент полезного действия поршневого компрессора
- •Вопрос 3.8. Охлаждение компрессора, схема
- •Вопрос 3.9. Принцип расчета системы охлаждения
- •Вопрос 3.10. Конструкции поршневых компрессоров, схемы
- •Вопрос 3.11. Основные узлы и детали компрессора
- •Вопрос 3.12. Системы смазки компрессора
- •Вопрос 3.13. Регулирование производительности поршневых компрессоров
- •Вопрос 3.14. Турбокомпрессоры, принцип работы, схема
- •Вопрос 3.15. Особенности конструкции турбокомпрессора. Сравнение с поршневым компрессором
- •Вопрос 3.16. Характеристика турбокомпрессора
- •Вопрос 3.17. Винтовые компрессоры
- •Вопрос 3.18. Ротационные компрессоры
- •Вопрос 3.19. Газомотокомпрессор
- •Вопрос 3.20. Эксплуатация поршневых компрессоров
- •Вопрос 3.21 . Типы компрессоров, их применение
- •Вопрос 3.22. Компрессорные станции. Схема работы
- •Вопрос 3.23. Неисправности компрессоров
- •Тема 4 Оборудование для эксплуатации скважин
- •Вопрос 4.1. Конструкция и обозначения обсадных труб
- •Вопрос 4.2. Назначение и конструкция колонных головок
- •В опрос 4.3. Конструкция трубных головок
- •Вопрос 4.4. Фонтанная арматура
- •Вопрос 4.5. Запорные и регулирующие устройства фонтанной арматуры и манифольда
- •Вопрос 4.6. Монтаж и демонтаж фонтанной арматуры
- •Вопрос 4.7. Эксплуатация фонтанной арматуры
- •Вопрос 4.8. Ремонт фонтанной арматуры
- •Вопрос 4.9. Принцип работы газлифтного подъемника
- •Вопрос 4.10. Компрессорное оборудование при газлифте
- •Вопрос 4.11. Схема работы бескомпрессорного газлифта
- •Вопрос 4.12. Внутрискважинное оборудование при газлифте
- •Вопрос 4.13. Схема шсну
- •Вопрос 4.14. Скважинные штанговые насосы
- •Вопрос 4.15. Режим работы скважинных насосов. Динамограмма работы
- •Вопрос 4.16. Подача шсну. Коэффициент подачи
- •Вопрос 4.17. Ремонт, хранение и транспортировка скважинных насосов
- •Вопрос 4.18. Насосные штанги, конструкция, условия работы
- •Вопрос 4.19. Расчет и конструирование колонны
- •Вопрос 4.20. Утяжеленный низ колонны штанг
- •Вопрос 4.21. Эксплуатация, транспортировка и хранение штанг
- •Вопрос 4.22. Насосно-компрессорные трубы
- •Вопрос 4.23. Расчет колонны насосно-компрессорных труб
- •Вопрос 4.24. Кинематика станка-качалки
- •Вопрос 4.25. Силы, действующие в точке подвеса штанг
- •Вопрос 4.26. Принцип уравновешивания станка-качалки
- •Вопрос 4.27. Грузовое уравновешивание станка-качалки
- •Вопрос 4.28. Крутящий момент на кривошипе станка-качалки
- •Вопрос 4.29. Мощность электродвигателя станка-качалки
- •Вопрос 4.30. Кпд штанговой насосной установки
- •Ориентировочные значения кпд отдельных систем
- •Вопрос 4.31. Подбор оборудования для штанговой насосной установки
- •Вопрос 4.32. Устьевое оборудование шсну
- •Вопрос 4.33. Редукторы станков-качалок
- •Вопрос 4.34. Основные типы балансирных станков-качалок
- •Вопрос 4.35. Канатная подвеска станка качалки
- •Вопрос 4.36. Монтаж станка-качалки
- •Вопрос 4.37. Техника безопасности при эксплуатации скважин штанговыми насосами
- •Вопрос 4.38. Эксплуатация балансирных станков-качалок
- •Вопрос 4.39. Схема уэцн
- •Вопрос 4.40. Устьевое оборудование уэцн
- •Вопрос 4.41. Конструкция электроцентробежного насоса
- •Вопрос 4.42. Гидрозащита электродвигателя
- •Вопрос 4.43. Система токоподвода
- •Вопрос 4.44. Конструкция электродвигателя
- •Вопрос 4.45. Монтаж установки погружных эцн
- •Вопрос 4.46. Обслуживание установок погружных эцн
- •Вопрос 4.47. Назначение и конструкция обратного и спускного клапана
- •Вопрос 4.48. Компоновка погружного агрегата электровинтовой насосной установки
- •Вопрос 4.49. Конструкция скважинного винтового насоса
- •Вопрос 4.50. Принципиальные схемы закрытой и открытой гпну
- •Вопрос 4.51. Принцип действия гидропоршневого насосного агрегата.
- •Вопрос 4.52. Схема работы и принцип действия диафрагменного насоса
- •Вопрос 4.53. Схема работы и принцип действия струйного насоса
- •В опрос 4.54. Скважинный струйный насос
- •Тема 5 оборудование и инструмент для ремонта скважин
- •Вопрос 5.1. Классификация видов ремонта и операций в скважинах
- •Вопрос 5.2. Талевая система
- •Вопрос 5.3. Инструмент для проведения спо
- •Вопрос 5.3.1. Элеваторы
- •В опрос 5.3.2. Спайдеры
- •Вопрос 5.3.3. Ключи
- •Вопрос 5.4. Роторные установки
- •Вопрос 5.5. Трубные и штанговые механические ключи
- •Вопрос 5.6. Порядок спо с применением апр
- •Вопрос 5.7. Подъемные лебедки
- •Вопрос 5.8. Подъемные агрегаты
- •1, 2. 3 И 4 - звездочки цепного привода лебедки; 5 - ведомая шестерня конического
- •Вопрос 5.9. Вертлюги
- •Вопрос 5.10. Противовыбросовое оборудование
- •Вопрос 5.11. Винтовой забойный двигатель
- •Вопрос 5.12. Ловильный инструмент
- •Тема 6 оборудование для технологических процессов
- •Вопрос 6.1. Насосные установки
- •Вопрос 6.2. Смесительные установки
- •Вопрос 6.3. Автоцистерны
- •Вопрос 6.4. Устьевое и вспомогательное оборудование
- •Вопрос 6.5. Оборудование для депарафинизации скважин Промысловая паровая передвижная установка ппуа-1600/100
- •Вопрос 6.6. Оборудование для исследования скважин
- •Вопрос 6.7. Эксплуатационные пакеры
- •Вопрос 6.8. Эксплуатационные якори
- •Вопрос 6.9. Расположение оборудования при ско
- •Вопрос 6.10. Расположение оборудования при грп
- •Вопрос 6.11. Расположение оборудования при промывке скважины
- •Тема 7 оборудование для механизации работ
- •Вопрос 7.1. Трубовоз твэ-6,5-131а
- •Вопрос 7.2. Агрегат для перевозки штанг апш
- •Вопрос 7.3. Промысловые самопогрузчики
- •Вопрос 7.4. Агрегат атэ - 6
- •Вопрос 7.5.Установка для перевозки кабеля упк-2000пм
- •Вопрос 7.6. Агрегат 2парс
- •Вопрос 7.7. Агрегат аза-3
- •Вопрос 7.8. Агрегат 2арок
- •Вопрос 7.9. Агрегат для обслуживания и ремонта водоводов 2арв
- •Вопрос 7.10. Маслозаправщик мз-4310ск
- •Список литературы
Вопрос 3.5. Подача поршневого компрессора, коэффициент подачи
Подачей компрессора называют объем или массу газа, проходящего за единицу времени по линии всасывания или линии нагнетания компрессора. Расход газа на нагнетании всегда меньше, чем на всасывании, за счет утечек газа через неплотности.
Объемный расход газа обычно приводится к условиям всасывания (к давлению и температуре во всасывающей линии), нормальным условиям (давление 1013,25гПа и температура 293,15°К) или стандартным условиям (1013,25гПа и 293,15°К).
Потребителя интересует обычно количество газа, подаваемого ему от компрессора, приведенное к нормальным или стандартным условиям. Иногда эту подачу называют коммерческой.
Подача компрессора с одним цилиндром одинарного действия (см. рис. 3.3)
(3.13)
где - коэффициент подачи, зависящий от многих факторов;
-
объем описываемый поршнем за ход в одну
сторону;
п - число двойных ходов поршня в минуту (с возвращением в исходное положение).
Коэффициент подачи:
(3.14)
-87-
где
коэффициенты:
- объемный;
-
герметичности;
-
температурный;
-
давления.
Объемный коэффициент отражает степень полноты использования объема цилиндра:
=1-
(3.15)
Здесь коэффициент ξ равен отношению давления в конце нагнетания к давлению в начале всасывания, а коэффициент а = Vм/VТ, то есть он является относительной величиной мертвого пространства. Коэффициент т - показатель политропы.
Коэффициент герметичности это функция подачи компрессора от запаздывания закрытия клапанов, негерметичности уплотнений зазора между поршнем и цилиндром, уплотнений штоков у цилиндров двойного действия, негерметичности соединений рабочих каналов. Коэффициент герметичности обычно принимается в пределах 0,95...0,98.
Температурный коэффициент отражает влияние нагрева газа при всасывании за счет теплообмена с горячими стенками цилиндра и каналов. При нагреве увеличивается объем газа, находящегося в цилиндре, и уменьшается полезный объем газа, поступающего в цилиндр из всасывающего патрубка.
Температурный коэффициент зависит от степени сжатия газа, поскольку от этого зависят температура нагнетаемого газа и температура стенок каналов и цилиндра. Ориентировочно температурный коэффициент можно найти с помощью следующего выражения:
= 1-0,01- (ξ-1). (3.16)
Коэффициент давления учитывает снижение подачи компрессора за счет уменьшения давления газа в цилиндре при всасывании по сравнению с давлением во всасывающем патрубке. В результате этого снижения давления газ расширяется, и в цилиндр входит меньшее его количество. На подачу влияет уменьшение давления не в начале, а в конце периода всасывания. Коэффициент давления обычно находится в пределах 0,95…0,98.
Вопрос 3.6. Многоступенчатое сжатие
Принцип получения высоких давлений в поршневом компрессоре.
При необходимости сжимать газ до давления, превышающего 0,4…0,7Мпа по манометру, применяют многоступенчатое сжатие, сущ-
-88-
ность которого состоит в том, что процесс сжатия газа разбивается на несколько этапов или ступеней. В каждой из этих ступеней газ сжимается до некоторого промежуточного давления и перед тем как поступать в следующую ступень, охлаждается в межступенчатом холодильнике. В последней ступени газ дожимается до конечного давления. В современных компрессорах высокого давления число ступеней сжатия достигает семи.
Причины, заставляющие применять многоступенчатое сжатие, следующие;
- выигрыш в затраченной работе;
- ограничение температуры конца сжатия; - более высокий коэффициент подачи
Как было сказано выше, работа адиабатического сжатия значительно превышает работу изотермического сжатия. При увеличении степени сжатия это расхождение быстро увеличивается. Значительное увеличение давления газа в одном цилиндре приводит к тому, что самое тщательное охлаждение цилиндра не приближает процесс сжатия к изотермическому, и он становится близок илитфактически идентичен адиабатическому процессу. Это устанавливает предел повышения давления в одном цилиндре компрессора.
Для уменьшения работы сжатия применяется ступенчатое сжатие газа с охлаждением его в охладителях, расположенных между ступенями компрессора.
В результате охлаждения газа устраняется и другая причина, обусловливающая применение ступенчатого сжатия, это недопустимое повышение температуры газа при большой степени повышения давления одноступенчатым компрессором. Температура на этапе сжатия газа не должна достигать значений, при которых происходит изменение свойств компрессорного масла. С повышением температуры газа вязкость масла уменьшается, ухудшаются условия смазки, и увеличивается износ трущихся деталей компрессора. При достижении температур порядка 180...200°С масло разлагается, в результате чего поверхности деталей цилиндра компрессора и нагнетательная линия покрываются нагаром. Это ухудшает охлаждение компрессора и нарушает его нормальную работу (увеличивается трение между поршневыми кольцами и цилиндром, возможны поломки колец и задиры поверхности цилиндра, ухудшается работа клапанов, возникает опасность самовозгорания и взрыва в нагнетательной линии).
В одной ступени компрессора можно достичь только определенных значений
ξ = р1 /р2. Так чрезмерное повышение ξ может привести к значительному уменьшению коэффициента подачи и, следовательно, к уменьшению производительности компрессора. Предельный случай, когда компрессор перестает перемещать газ, будет при = 0. При этом критическое значение ξ, исходя из формулы (2.15),
-89-
ξ=
(3.17)
На
рис. 3.4. приведена диаграмма
р-V,
иллюстрирующая
зависимость
всасывающих объемов от давления
нагнетания р2
при
р1
= const.
Из этой диаграммы следует, что увеличение давления нагнетания до р2"приводит к уменьшению объема всасывающего газа до V". При повышении давления нагнетания до р2'" объем всасываемого газа становится равным нулю. Процесс сжатия и расширения газа в этом случае характеризуется кривой 1'- 2'".
У
казанные
причины ограничивают
степень повышения давления
одной ступени компрессора
значением ξ=
4...5,5.
Индикаторная диаграмма двухступенчатого компрессора. На рис. 3.5 показана индикаторная диаграмма идеального рабочего процесса в двухступенчатом компрессоре. В первой ступени сжатие происходит так же, как и в одноступенчатом компрессоре. Когда газ из первой ступени подается в охладитель во второй,
-90-
осуществляется этап всасывания газа после охладителя. Подача газа второй ступенью происходит при закрытом всасывающем клапане этой ступени.
Температура газа, поступающего после сжатия из первой ступени в охладитель, понижается в нем до температуры газа на входе в первую ступень компрессора Т1 (пунктирная линия 1 -а соответствует изотермическому процессу сжатия газа). Таким образом, состояние газа после охладителя соответствует сжатию его в первой ступени по изотермическому процессу. Изобарический процесс, т. е. процесс, протекающий при постоянном давлении (линия 2-У), характеризуется охлаждением газа при его движении от первой до второй ступени компрессора через охладитель. Этапу сжатия во второй ступени соответствует линия 1'-2'.
При одноступенчатом сжатии без промежуточного охлаждения этому процессу соответствует линия 1—b. Таким образом, в двухступенчатом компрессоре работа сжатия газа меньше работы сжатия газа в одноступенчатом компрессоре на величину площади 2-b-2'-1' индикаторной диаграммы.
Работа сжатия газа в двухступенчатом компрессоре:
Если температура газа после охладителя становится равной температуре газа на входе в первую ступень компрессора, то
(3.18)
Анализируя формулу (3.18) можно, в конечном счете, получить, что для компрессора с 2 ступенями:
(3.19)
Уравнение 3.19 соответствует сжатию газа с наименьшей затратой работы, при этом степени повышения давления каждой из ступеней компрессора равны между собой и температура на выходе из компрессора имеет наименьшее значение.
В зависимости от ξприменяются компрессоры со следующими числами ступеней z:
-91-
Таблица 2
ξ≤7
|
5... 30
|
13. ..150
|
35... 400
|
150. ..1100
|
z = 1
|
2
|
3
|
4
|
5. ..7
|
При реальном процессе работа сжатия увеличивается за счет потерь мощности в клапанах, недостаточного охлаждения газа, изменения свойств газа при сжатии и других факторов. Практически реальный рабочий процесс ступенчатого сжатия соответствует идеальному рабочему процессу.