
- •1. Закон Ома для участка цепи.
- •3. Способы соединения идеализированных элементов и эквивалентные преобразования. Последовательное соединение, параллельное соединение, смешанное соединение.
- •Смешанное соединение – комбинация параллельного и последовательного соединений.
- •4. Преобразование треугольника в эквивалентную звезду, Преобразование звезды в эквивалентный треугольник. Эквивалентные источники напряжения и тока. Понятие о дуальности электрических цепей.
- •5. Законы Кирхгофа для мгновенных величин. Распределение потенциала вдоль цепи с сопротивлениями и источниками напряжения. Потенциальная диаграмма. Баланс мощностей.
- •6. Метод расчета сложных схем с использованием уравнений Кирхгофа, план анализа, пример.
- •7. Метод контурных токов, план анализа, пример.
- •8. Метод узловых потенциалов, план анализа, пример.
- •9. Метод наложения, план анализа, пример.
- •10. Теорема об эквивалентном источнике напряжения. Метод эквивалентного генератора, план анализа, пример.
- •12. Мгновенная и средняя мощности гармонических колебаний.
- •13. Гармонический ток через резистор, напряжение на резисторе. Мгновенная и средняя мощность. Временная и векторная диаграммы тока, напряжения и мощности.
- •14. Гармонический ток через индуктивность, напряжение на индуктивности. Мгновенная и средняя мощность. Временная и векторная диаграммы тока, напряжения и мощности.
- •1 5. Гармонический ток через конденсатор, напряжение на конденсаторе. Мгновенная и средняя мощность. Временная и векторная диаграммы тока, напряжения и мощности.
- •16. Гармонический ток через цепь последовательно соединенных элементов r и l. Векторная диаграмма тока и напряжения.
- •17. Гармонический ток через цепь последовательно соединенных элементов r и с. Векторная диаграмма тока и напряжения.
- •18. Метод комплексных амплитуд. Комплексные амплитуды и комплексные действующие значения. Операции с комплексными значениями.
- •19. Законы Ома и Кирхгофа для комплексных действующих значений.
- •20. Гармонический ток через цепь последовательно соединенных элементов r, l и с. Комплексное сопротивление. Реактивное сопротивление. Векторные диаграммы напряжений и тока.
- •21. Гармонический ток через цепь последовательно соединенных элементов r, l и с. Комплексное сопротивление. Треугольник сопротивлений.
- •22. Гармонический ток в цепи параллельно соединенных элементов r, l и с. Комплексная проводимость. Реактивная проводимость. Векторные диаграммы напряжения и токов.
- •23. Гармонический ток в цепи параллельно соединенных элементов r, l и с. Комплексная проводимость. Треугольник проводимостей.
- •24. Расчет мощности. Активная (средняя), реактивная и полная комплексная мощность. Треугольник мощностей. Коэффициент мощности.
- •25. Баланс мощностей в цепях гармонического тока. Топографическая диаграмма.
- •26. Делители напряжения и тока.
- •27. Согласование источника энергии с нагрузкой.
- •28. Понятие о комплексных частотных характеристиках (кчх). Передаточные и входные комплексные частотные характеристики. Амплитудно-частотные и фазо-частотные характеристики.
- •29. Кчх идеализированных двухполюсных пассивных элементов (сопротивления, индуктивности, емкости).
- •30. Кчх цепей с одним реактивным элементом.
- •32. Резонансный режим работы цепи. Резонанс токов. Нахождение резонансной частоты контура. Частотные характеристики резонансного контура. Векторная диаграмма.
- •33. Разновидности параллельного колебательного контура. Нахождение резонансной частоты.
- •34. Понятие о взаимной индуктивности. Магнитный поток самоиндукции. Магнитный поток рассеяния. Магнитный поток взаимной индукции.
- •36. Трансформатор.
- •37. Генерирование гармонической эдс.
- •38. Трехфазная цепь. Способы представления токов напряжений в фазах трехфазной цепи.
- •45. Расчет мощностей. Активная, реактивная и полная мощность трехфазной цепи. Симметричная и несимметричная нагрузка.
12. Мгновенная и средняя мощности гармонических колебаний.
Мгновенная мощность гармонических колебаний равна: Рm = i∙u, где u и i - мгновенные значения напряжения и тока. Величины тока и напряжения, входящие в выражение, являются синусоидальными функциями времени, поэтому и мгновенная мощность является переменной величиной. График этой величины представлен на рисунке.
Для оценки используется понятие средней мощности за период. Ее можно получить, интегрируя за период T работу, совершаемую электрическим полем, а затем соотнося ее с величиной периода, т.е.
Пусть u=Umsinwt и Imsin(wt − φ), тогда средняя мощность будет равна
т.к. интеграл второго слагаемого равен нулю. Величина cosφ называется коэффициентом мощности.
Из этого выражения следует, что средняя мощность в цепи переменного тока зависит не только от действующих значений тока I и напряжения U, но и от разности фаз φ между ними. Максимальная мощность соответствует нулевому сдвигу фаз и равна произведению UI. При сдвиге фаз между током и напряжением в φ = 90° средняя мощность равна нулю.
P = UI cosφ = U(I cosφ ) = UIа = I(U cosφ ) = IUа .
Учитывая, что активные составляющие тока и напряжения можно выразить через резистивную состаляющую комплексного сопротивления цепи как Iа=U/R или Uа=IR , выражение (4) можно записать также в форме P = I2R = U2/R .
Среднюю мощность P называют также активной мощностью и измеряют в ваттах [Вт].
Выделим подинтегральную функцию выражения (3)
Отсюда следует, что мгновенная мощность изменяется с двойной частотой сети относительно постоянной составляющей UIcosφ равной средней или активной мощности.
13. Гармонический ток через резистор, напряжение на резисторе. Мгновенная и средняя мощность. Временная и векторная диаграммы тока, напряжения и мощности.
Активное электрическое сопротивление – параметр пассивного двухполюсника, равный отношению активной мощности, поглощаемой в этом двухполюснике, к квадрату действующего значения тока через этот двухполюсник (ГОСТ Р52002-2003).
Пусть к активному сопротивлению (рис.2.5) приложено синусоидальное напряжение
u=Um sin(wt+ φU ) с начальной фазой φU = 0. Тогда по закону Ома
u = iR, iR=Umsinwt,
-
i =
Um sinwt
, φi = 0
R
Значит φ = φi – φU = 0
, .
На участке цепи с активным сопротивлением ток совпадает по фазе с напряжением на этом участке.
Мгновенная мощность:
-
Рm = i∙U =
U2m sin2wt
R
Средняя мощность:
-
Рср =
U2m
2R
Векторная диаграмма действующих значений тока и напряжения, графики зависимостей мгновенных значений тока и напряжений приведены на рис. 2.6.
Рис. 2.6