
- •1. Трибология и триботехника
- •1.1. Основные понятия
- •1.2. Роль трения в работе машин и оборудования и основные задачи триботехники
- •2. Виды и режимы трения
- •2.1. Классификация трения
- •3. Эволюция взглядов на природу трения твердых тел
- •4. Особенности строения и свойства трущихся тел
- •4.1. Характер взаимодействия между атомами, ионами и молекулами
- •4.2. Кристаллические и аморфные тела
- •4.3. Монокристаллы и поликристаллы. Элементарная кристаллическая ячейка
- •4.4 Теоретическая и реальная прочность твердых тел. Дефекты структуры
- •4.5. Рельеф поверхности твердых тел
- •4.6. Микродефекты поверхности.
- •4.7. Физико-химические свойства поверхностей трения твердых тел. Свободная поверхностная энергия твердых тел. Адсорбция
- •5. Особенности взаимодействия твердых тел
- •5.1. Контактирование гладких поверхностей твердых тел
- •5.2. Адгезионное взаимодействие между твердыми телами
- •5.3. Типы фрикционных связей
- •5.4. Развитие усталостных трещин при трении
- •5.5. Работа сил трения. Температура на поверхностях трения
- •5.6. Химическое модифицирование поверхности
- •5.7. Эффект п.А.Ребиндера
- •5.8. Угол смачивания поверхности твердого тела
- •5.9. Особенности трения твердых тел
- •5.10. Влияние окисных, адсорбционных и других поверхностных пленок на трение твердых тел
- •5.11. Обобщенные закономерности трения твердых тел
- •6. Изнашивание твердых тел
- •6.1. Общие понятия и определения
- •6.2. Классы износостойкости
- •6.3. Входные и выходные параметры и внутренние факторы, определяющие износ
- •7. Механизмы и особенности видов изнашивания
- •7.1. Механические виды изнашивания
- •7.2. Молекулярно-механические виды изнашивания
- •7.3. Коррозионно-механические виды изнашивания
- •7.4. Переход одних видов изнашивания в другие
- •7.5. Адсорбционное понижение прочности трущихся тел
- •8. Три стадии изнашивания трущихся тел
- •8.1. Распределение износа между трущимися телами по их рабочим поверхностям
- •9. Расчетные методы оценки изнашивания
- •9.1. Общие закономерности измерения силы трения и скорости изнашивания в зависимости от условий нагружения
- •9.2. Понятие износостойких и неизносостойких материалов
- •9.3. Основные направления совершенствования триботехнических свойств подшипников скольжения и качения
- •10. Смазка и смазочные материалы
- •10.1. Основные понятия и определения
- •10.2. Жидкие смазочные материалы
- •10.3. Твердые смазочные материалы
- •10.4. Пластичные смазочные материалы
- •10.5. Газовые смазочные материалы
- •10.6. Целесообразность использования смазочных материалов
- •11. Методы и приборы для исследования трения и износа твердых тел
- •11.1. Классификация машин трения по силовым и кинематическим признакам
- •11.2. Общие представления о конструкции и технических характеристиках отечественных машин трения
- •11.3. Отечественные серийные универсальные машины трения
- •11.4. Методы трибологических испытаний
- •11.5. Переносные устройства для измерения коэффициента трения
- •Вопросы для самопроверки
- •5.2. Каковы виды адгезионного взаимодействия твердых тел?
- •6.1. Что такое изнашивание и износ, и способы их обозначения?
- •7. Механизмы и особенности видов изнашивания
- •Литература
- •Оглавление
4.4 Теоретическая и реальная прочность твердых тел. Дефекты структуры
Использовав представления о структуре твердых тел и материале его частиц, можно рассчитать их действительную прочность. Расчеты для ряда реальных тел показывают, что их теоретическая прочность в 100...10000 раз отличается от прочности, реализуемой реальными телами. Причиной тому являются дефекты структуры реальных тел. Среди них наиболее распространенными являются: точечные дефекты, линейные дефекты, поверхностные неоднородности и объемные неоднородности материала.
Точечные дефекты. В процессе кристаллизации или в результате взаимодействия с внешними силами внутренняя структура кристаллических тел может приобрести существенные изменения. Эти изменения (рис. 4.6) могут проявиться в виде "дырки"(1) - случай, когда в одном из мест кристаллической решетки отсутствуют тот или иной атом или появляется дефект; "внедрения"(2) - случай, когда одна из частиц кристаллической решетки застревает в ее междуузле или дефекта "замещения"(3) - случай, когда необходимый вид частицы решетки случайно заполняется частицей совершенно иного сорта.
Каждый из этих дефектов вносит дополнительные напряжения в кристаллическую решетку твердого тела и уменьшает его прочность.
Рис. 4.6. Точечные дефекты кристаллических тел
Линейные дефекты. В процессе кристаллизации образуются блоки кристаллической решетки, несколько сдвинутые по направлениям. Границы же блоков представляют собой области с нарушенными структурами, а, следовательно, и с характером взаимодействия между частицами, их составляющими. В тоже время, под действием внешних сил в структуре кристаллических тел могут произойти смещения частиц, приводящие к нарушениям в строении кристаллических тел. Геометрические формы линейных дефектов очень сложные, однако предельные их случаи - краевая и винтовая формы - могут быть представлены в виде схем (рис. 4.7, 4.8).
Рис. 4.7. Схематическое изображение линейного дефекта
в виде винтовой дислокации
Рис. 4.8. Схематическое изображение линейного дефекта
в виде сдвиговой дислокации
Линейные нарушения чередования атомных плоскостей в кристаллической решетке твердых тел получили название дислокации. В переводе с греческого языка это слово означает смещение. Смещение в кристаллических решетках приводит к возникновению дополнительных концентраций напряжений и, как следствие, к существенному изменению прочности твердых тел. На рис.4.9 показано, что с увеличение плотности дислокаций в материале модуль Юнга Е резко уменьшается и после перехода некоторого минимума несколько повышается за счет выхода дислокаций на границы зерен или поверхность, а также за счет их взаимного наложения и компенсации.
Рис. 4.9. Зависимость сопротивления деформации
от плотности дислокаций
Поверхностные (двухмерные) неоднородности представляют собой дефекты поверхности границ зерен и дефекты упаковки, возникающие как при зарождении кристаллов, так и в процессе их эксплуатации.
Объемные (трехмерные) неоднородности представляют собой аморфные области, поры, трещины, а также всевозможные включения.