
- •Часть I. Виды услуг связи, протоколы, методы передачи информации 9
- •Глава 1. Методы и основные виды протоколов передачи информационных потоков ..9
- •Глава 2. Аппаратура цифровой иерархии одноволновых восп 29
- •Глава 3. Повышение пропускной способности линий связи 49
- •Глава 4. Оптические сети доступа 73
- •Глава 5. Тестирование и мониторинг восп 88
- •Часть 2. Элементная база восп. Пассивные оптические элементы 99
- •Глава 6. Современные оптические волокна 100
- •Часть I. Виды услуг связи, протоколы, методы передачи информации
- •Глава 1. Методы и основные виды протоколов передачи информационных потоков
- •1.3. Плезиохронный метод цифровой передачи.
- •1.4. Линейные коды в системах волс пци
- •1.6. Параметры и конфигурации одноволновых восп-сци
- •Глава 2. Аппаратура цифровой иерархии одноволновых восп
- •2.1. Аппаратура восп плезиохронной цифровой иерархии
- •2.2. Аппаратура сци (sdh)
- •Глава 2. Аппаратура цифровой иерархии одноволновых восп
- •Глава 3. Повышение пропускной
- •3.1. Метод временного уплотнения (tdm)
- •3.2. Метод частотного уплотнения (fdm)
- •3.3. Модовое уплотнение (mdm)
- •3.4. Уплотнение по поляризации (pdm)
- •3.5. Методы уплотнения каналов по полярности
- •3.6. Многоволновое уплотнение оптических несущих (wdm)
- •3.7. Оптическое временное уплотнение (otdm)
- •Глава 4. Оптические сети доступа
- •4.1. Документальная основа оптических сетей доступа (осд), определения, основные характеристики
- •4.2. Пассивная оптическая сеть доступа (пос)
- •4.4. Элементная база осд
- •4.5. Волоконно-оптические системы кабельного
- •Глава 5. Тестирование и мониторинг восп
- •5.1. Тестирование и мониторинг одноволновых однопролетных восп
- •5.2. Тестирование и мониторинг многопролетных восп-ср
- •5.2.1. Особенности восп-ср
- •5.2.2. Измерение спектральных параметров
- •5.2.3. Измерение и контроль средней оптической мощности в восп-ср
- •5.3. Измерение системного параметра восп-ср — q-фактора
- •5.4. Метод непрерывного контроля многопролетных восп-ср
- •Часть 2. Элементная база восп.
- •Глава 6. Современные оптические волокна
- •6.1. Физические принципы работы оптического волокна
- •6.5. Поляризационная модовая дисперсия (pmd)
- •6.6. Нелинейные оптические явления в одномодовых волокнах
- •6.7. Фазовая самомодуляция (фсм) и перекрестная фазовая модуляция (фкм)
- •6.8. Четырехволновое смешение (чвс)
- •6.9. Рассеяние Мандельштама—Бриллюэна (рмб или sbs)
- •6.10. Одномодовые волокна новых типов производства компаний lucent technologies и corning
- •Глава 7. Оптические кабели
- •Глава 8. Пассивные оптические элементы
- •8.1. Волоконно-оптические ответвители и разветвители
- •8.2. Волоконно-оптические переключатели
- •8.13. Микроэлектромеханический оптический коммутатор
- •8.4. Волоконно-оптические циркуляторы
- •8.5. Оптические мультиплексоры/демультиплексоры
- •8.6. Электрооптические модуляторы
- •Часть 3. Элементная база восп.
- •Глава 9. Оптические усилители
- •9.1. Волоконно-оптические усилители на основе активных волокон
- •Глава 9. Оптические усилители
- •9.2. Полупроводниковые оптические усилители (поу)
- •Глава 10. Полупроводниковые квантовые генераторы когерентного оптического излучения (пкг)
- •10.1. Принципы работы пкг или пл
- •Глава 11. Оптоэлектронные устройства на основе непрямозонных полупроводниковых структур
- •11.1. Зонные структуры полупроводников
- •11.2. Фотоприемники
- •11.3. Чувствительность систем восп-ср
- •11.4 Фотодетекторы, селективные по длине волны
- •Глава 12. Пути создания оптической глобальной сети связи
- •12.3. Светоуправляемые оптические переключатели
- •12.4. Светоуправляемые бистабилыные оптические устройства
- •12.5. Формирователи оптических цифровых потоков информации без использования электроники
5.4. Метод непрерывного контроля многопролетных восп-ср
В
этом разделе рассматривается метод
решения проблемы непрерывного контроля
ВОСП с многопролетным оптичееким
трактом. В разделе 5.1 были описаны
системы непрерывного сквозного контроля
для однопролетных ВОСП. Эти системы
основаны на использовании оптических
рефлектометров.
. Работа этих приборов основана на измерении обратного рэлеевского рассеяния, которое распространяется в направлении, противоположном зондирующему сигналу. Включение рефлектометров на оконечных пунктах в многопролетных линиях обеспечивает контроль параметров только на первом и последнем ЭКУ. Поскольку в промежуточных пунктах линии связи установлены оптические усилители, пропускающие излучение только в прямом направлении, сквозной контроль тракта между точками MPI-S и MPI-R оказывается невозможным. Кроме того, максимальная дальность действия лучших современных рефлектометров не превышает 350 км, тогда как длина регенерационной секции многопролетной ВОСП-СР может достигать 1200-1500 км.
Одним из методов решения проблемы сквозного непрерывного контроля является организация канала обратной оптической связи между прямым и обратным информационным волокном в каждом пункте установки ЛОУ [73, 74]. Конфигурация схемы реализации этого метода представлена на рис. 5.5, где TRS — транс-пондер передачи, ОМ — оптический мультиплексор, ОУ — оптический усилитель передачи и приема), ЛОУ — промежуточный (линейный) усилитель, блок ТК и СС — узел телеметрического контроля и служебной связи.
Поскольку оптические усилители как на оконечных, так и в промежуточных пунктах для обоих направлений (прямого и обратного) находятся в одной точке, то организация обратных каналов для прохождения сигналов обратного рэлеевского рассеяния на выделенной длине волны не представляет большой проблемы. Для осуществления сквозного контроля по такой схеме необходим специальный рефлектометр с раздельным входом и выходом для зондирующего и обратного сигналов.
Наиболее простым способом организации непрерывного контроля ЭКУ является применение оптических рефлектометров в каждом пункте и передача полученных результатов в виде цифровых данных по выделенному каналу на X — 1510 нм для ТК и СС, который предусмотрен рекомендациями G.692. При использовании этого способа следует учитывать два фактора: необходимость дополнительного питания и высокую стоимость рефлектометров. Проблема может быть решена путем использования компромиссного варианта, суть которого состоит в
следующем. Очевидно, что цель контроля параметров и состояния ЭКУ состоит в непрерывном измерении затухания в волокне и потерь в дискретных элементах — местах сварок строительных длин волн ОК, соединителей, ответвителей и других элементов, а также обнаружение возникающих трещин и изгибов ОВ и определение расстояния до этих трещин и изгибов. Первая из этих задач — измерение и контроль затухания решается с помощью встроенных во всех оптических усилителях на входе и выходе однопроцентных ответвителей. С их помощью измеряется мощность оптического группового сигнала на выходе усилителя передачи и на входе следующего ЛОУ. Полученные данные по каналу ТК и СС передаются на оконечные пункты, где информация отображается на дисплее и записывается в память компьютера.
Для фиксации возникшего в ОВ повреждения и определения расстояния до него в пункте каждого ЛОУ вместо рефлектометра целесообразнее использование оптических локаторов — измерителей места обрыва. Эти приборы фиксируют сигналы френелевских отражений от локальных неоднородностей. Энергия этих сигналов более чем на два порядка превышает энергию сигналов рэлеевского рассеяния, поэтому чувствительность оптических локаторов может быть значительно более низкой, чем у рефлектометров. Этим обстоятельством обусловлена относительная простота и, следовательно, низкая стоимость таких приборов. Они более чем в десять раз дешевле рефлектометров, имеют значительно меньшие габариты и вес, а также малую потребляемую электрическую мощность. Среди серийно выпускаемых в настоящее время оптических локаторов можно назвать прибор Optical Fault Locator-630 фирмы Datacom Textron, а также волоконный локатор ВЛ-Зх «Обрыв», разработанный Институтом информационных технологий (г. Минск). Последний из названных приборов имеет следующие технические характеристики: рабочие длины волн 1310 ± 20 нм и 1550 ± 20 нм, максимальная длина измеряемого кабеля 120 км, динамический диапазон 30 дБ, погрешность от 1 до 30 м, вес 1 кг, габариты 220 х 35 х 10 мм. Применение таких приборов в каждом промежуточном пункте может обойтись дешевле одногорефлектометра.
В целом же проблема тестирования и непрерывного контроля многопролетных ВОСП-СР до настоящего времени не решена.