Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lec_term2.doc
Скачиваний:
5
Добавлен:
18.11.2019
Размер:
228.86 Кб
Скачать
    1. Расчет количества теплоты и энтропия.

Из лекции 1 и анализа определения теплоемкости понятно, что количество теплоты можно определить двояко – через теплоемкости и через энтропию. Действительно, dq = cdT или dq = Tds, т.е. cdT = Tds, а переходя на геометрическую интерпретацию определенного интеграла ∫dq, как площади под кривой, можно воспользоваться тепловыми диаграммами с координатами с – Т или Т – s (см. рис. 2.6.).

Рис.2.6. Тепловые диаграммы с – Т и Т – s для некоторого вещества.

Заштрихована площадь, численно равная количеству теплоты.

Разумеется, вторая, т.е. Т – s диаграмма, более содержательна и строга, т.к. она имеет координаты в виде функций состояния. Остается для интегрирования выразить T через s (или сх через Т), что возможно при известных свойствах веществ.

3. Термодинамические свойства веществ.

3.1. Свойства веществ и расчет внутренней энергии и энтальпии.

Ранее мы получили важный результат: внутренняя энергия u(s,v) является функцией координат состояния s и v. С другой стороны имеем уравнение состояния рабочего тела, предоставленное физиками, T = T(s,v). Из этого уравнения ничто не мешает найти энтропию s = s(T,v) и подставить ее в зависимость для u(s,v). Получим новую зависимость u(s(T,v),v) = u(T,v) и для последней распишем полный дифференциал внутренней энергии du:

du = (∂u/∂T)vdT + (∂u/∂v)Tdv. (2.12)

Еще запишем основное уравнение термодинамики в двух формах (см. лекцию 1):

dq = du +dw, или dq = du + pdv, где dq =схdT в произвольном процессе.

Пусть х = v = const, т.е. конкретизируем изохорный процесс (dv = 0), и тогда схdT = cvdT = du, т.е.

сv = (∂u/∂T)v.

После подстановки этого выражения в (2.12) получаем:

du = cvdT + (∂u/∂v)Tdv. (2.13)

Получили очень важный результат в виде (2.13) - уравнение для расчета изменения внутренней энергии. Если рассмотреть еще энтальпию h(s,v), снова сделать замену переменных h(T,p) с помощью уравнений состояния, далее провести процесс х = p = const над рабочим телом, то получим уравнение для расчета изменения энтальпии:

dh = cpdT + (∂h/∂p)Tdp. (2.14)

Предлагаем студентам проделать эту процедуру.

Уравнения (2.13) и (2.14) справедливы для любых веществ и любых процессов c рабочим телом.

3.1.1. Идеальный газ.

Определение. Идеальным газом называется такое состояние вещества, при котором можно пренебречь силами взаимодействия между молекулами этого вещества.

В этом определении понятия идеального газа подчеркивается, что одно и тоже вещество может быть в любом состоянии, в том числе и в состоянии идеального газа. Например, воздух при обычных условиях (давление и температура – атмосферные) – является идеальным газом. Тот же воздух в жидком состоянии уже не идеальный газ. Пары воды в составе атмосферного воздуха – идеальный газ, а вода в состоянии близком к кипению или конденсации – нет.

В первой лекции было дано определение понятия уравнения состояния: это функциональная зависимость потенциала взаимодействия системы какого-то рода от всех координат состояния. Для термодеформационной системы (а это и есть предмет изучения технической термодинамики) имеем ровно два уравнения состояния:

T = T(s,v) и p = p(s,v). (2.15.1)

Конкретный вид этих зависимостей предоставляют физики для каждого индивидуального рабочего тела (вещества).

Как показано в лекции 1, можно провести несложную замену переменных:

T = T(s,v) → s = s(T,v) → p(s(T,v),v) = p(T,v).

И получаем другую пару уравнений состояния:

T = T(s,v) и p = p(T,v). (2.15.2)

Чисто исторически получилось так, что одно из этих уравнений состояния появилось на свет задолго до появления понятия энтропии и включает в свой состав легко измеряемые в опытах параметры p, v,T, формализуемые в уравнение p = p(T,v)

Вначале уравнение состояния идеального газа было получено экспериментально для условий с небольшими давлениями и температурами. В дальнейшем это уравнение было получено строго на основании молекулярно-кинетической теории газов.

Для 1 кг вещества уравнение состояния идеального газа p = p(T,v) имеет вид:

pv = RуТ. (2.16.1)

Для произвольного количества вещества:

pV = mRуT. (2.16.2)

Если в ряду произвольных количеств вещества выбирается молярное количество, то:

pV΄ = nRT. (2.16.3)

В этих 3х уравнениях p, н/м2, v, м3/кг,T, К – параметры состояния, Rу = 8314/μ Дж/кгК, R = 8314 Дж/кмольК – универсальная газовая постоянная, V – геометрический объем, который занимает вещество, м3, V΄ - его молярный объем нм3/кмоль, m – масса, кг, n – кмоль количество вещества, μ – мольная масса вещества, кг/кмоль.

Условие критерия стабильности (см. первую лекцию), который определяет принцип достоверности построения любого уравнения состояния, выполняется для pv = RуT:

p = RуT/v → (∂(-p)/∂v)T = RуT/v2 ≥ 0.

Еще раз вернемся к основному уравнению термодинамики:

dq = du + pdv → cxdT = cvdT + pdv и

рассмотрим частный случай: рабочее тело находится в состоянии идеального газа и совершается процесс х = p = const. Тогда из предыдущего уравнения следует, что

cp = cv + p(∂v/∂T)p и pv = RуT → v = (R у/p)T → (∂v/∂T)p = Rу/p.

Окончательно, получаем

cp = cv + Rу, и, конечно, cp > cv . (2.17)

Соотношение между теплоемкостями (2.17) в термодинамике носит название закона Майера. Из него следует, что на практике достаточно определить только одну теплоемкость cp или сv, чтобы сразу найти другую. И не будем забывать, что закон Майера справедлив только для идеального газа. Для реальных веществ с другими уравнениями состояния можно лишь говорить, что cp > cv.

Замечание. Уравнение Майера справедливо не только для истинных теплоемкостей, но и для средних. Дело в том, что операция усреднения (2.10) в (2.17) постоянной величины Rу дает в результате саму постоянную.

.

Как ясно из выведенных уравнений (2.13) и (2.14), внутренняя энергия и энтальпия зависят от свойств веществ. Действительно, первое слагаемое включает теплоемкость в явном виде, а во втором слагаемом она же входит в неявном виде как u = u(cv, T). Одновременно, свойства веществ отражаются уравнениями состояния u = u(s,v) и h = h(s,v). Следовательно, оценку роли u и h и их связи с поведением рабочих тел можно установить только, если известны уравнения состояния конкретного вещества (рабочего тела).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]