
- •Оглавление
- •Раздел III. Шок. .............................................. 125
- •Часть III. Первая помощь
- •Часть I интенсивная терапия
- •Раздел I
- •Глава 1
- •Внешнее дыхание и функции легких
- •Дыхательная функция легких
- •И патофизиологические механизмы
- •Гипоксемии и гиперкапнии
- •Нормальные величины функциональных проб легких
- •Недыхательные функции легких
- •Методы исследования внешнего дыхания
- •Глава 2 острые нарушения дыхания
- •Глава 3 респираторная терапия
- •Глава 4 Искусственная вентиляция легких
- •Глава 5
- •Заболевания, приводящие к обструкции верхних дыхательных путей
- •Острая обструкция нижних дыхательных путей
- •Глава 6
- •Глава 7
- •Поддерживающие дозы эуфиллина
- •Глава 8
- •Глава 9
- •Раздел II
- •Глава 10
- •Распределение объемов крови в организме
- •Классификация типов гемодинамики
- •Глава 11
- •Острая левожелудочковая и правожелудочковая недостаточность
- •Глава 12
- •Препараты с положительным инотропным действием
- •Другие препараты, применяемые для лечения шока и сердечной недостаточности
- •Глава 13
- •Отек легких при изменениях коллоидно-осмотического давления
- •Отек легких при повышенной проницаемости сосудистой стенки
- •Глава 14
- •Раздел III
- •Глава 15
- •Глава 16
- •Гемодинамика при гиповолемическом шоке
- •Доставка кислорода к тканям в зависимости от степени кровопотери и гемодинамической компенсации
- •Алгоритмы первичного возмещения кровопотери (мужчина средних лет, масса тела 70 кг, кровопотеря 20,30 и 50 % оцк)
- •Глава 17
- •Шкала sofa [Vincent j.L. Et al., 1996]
- •Глава 18
- •Некоторые медиаторы анафилактической реакции
- •Раздел IV
- •Глава 19
- •Секторальное распределение воды в организме человека
- •Осмолярность и коллоидно-осмотическое давление
- •Концентрация компонентов плазмы и создаваемое ими осмотическое давление
- •Ионный и молярный состав жидкостей тела
- •Почечная регуляция водно-электролитного равновесия
- •Основная роль ионов
- •Содержание катионов и анионов в организме человека
- •Эквивалентные отношения некоторых химических соединений
- •Глава 20 дисбаланс жидкости и электролитов
- •Клинические и лабораторные признаки нарушений баланса воды и электролитов
- •Виды нарушений баланса воды и электролитов
- •Нарушение осмолярности (гипо- и гиперосмолярные состояния)
- •Нарушения коллоидно-осмотического давления плазмы
- •Зависимость коллоидно-осмотического давления от концентрации общего белка плазмы
- •Нарушения баланса электролитов
- •Острая почечная недостаточность
- •Глава 21 кислотно-основное состояние
- •Буферные системы
- •Первичные изменения параметров кос и компенсаторные реакции
- •Определение первичного нарушения кос
- •Анионная разница [по п. Марино, 1998]
- •Глава 22 нарушения кислотно-основного состояния
- •Острый дыхательный ацидоз
- •Хронический дыхательный ацидоз
- •Острый дыхательный алкалоз
- •Хронический дыхательный алкалоз
- •Метаболический ацидоз
- •Лактат-ацидоз
- •Акладка: проверить ф-лу
- •Кетоацидоз
- •Применение раствора калия
- •Алкогольный кетоацидоз
- •Метаболический алкалоз
- •Глава 23 реологические свойства крови и их нарушения при интенсивной терапии
- •Факторы, влияющие на вязкость крови
- •Норма вязкости крови при ротационной вискозиметрии
- •Глава 24 диссеминированное внутрисосудистое свертывание (двс-синдром)
- •Раздел V
- •Инфузионная терапия и парентеральное питание
- •Глава 25
- •Инфузионные среды
- •Аутогенные коллоидные растворы
- •Кристаллоидные растворы
- •Замещающие растворы
- •Базисные растворы
- •Корригирующие растворы
- •Концентраты электролитов (молярные растворы)
- •Содержание электролитов и осмотическая концентрация некоторых растворов [по я.А. Жизневскому, 1994]
- •Осмодиуретики
- •Детоксикационные растворы
- •Инфузионные растворы полифункционального действия
- •Новые плазмозаменители
- •Инфузионные растворы
- •Глава 26 основы инфузионной терапии
- •Потеря воды и электролитов в биологических жидкостях
- •Проведение инфузионной терапии
- •Пути введения инфузионных растворов
- •Катетеризация вен и артерий
- •Базисная инфузионная терапия
- •Корригирующая инфузионная терапия
- •Корригирующая инфузионная терапия при некоторых нарушениях [по в. Хартигу 1982].
- •Интенсивная терапия осмолярных и объемных нарушений
- •Гиперосмолярный синдром, обусловленный гипернатриемией.
- •Корригирующая терапия при метаболическом алкалозе
- •Корригирующая терапия при метаболическом ацидозе
- •Осложнения инфузионной терапии
- •Глава 27 инфузионная терапия в хирургической клинике предоперационный период
- •Операционный период (управление водно-электролитным балансом во время операции)
- •Инфузионная терапия в операционном периоде
- •Осложнения интраоперационной инфузионной терапии
- •Послеоперационный период (интерпретация водно-электролитного дисбаланса и корригирующая терапия)
- •Преренальные нарушения в сравнении с тубулярным некрозом (по Рендал)
- •Изменения метаболизма в послеоперационном периоде
- •Перитонит
- •Кишечная непроходимость
- •Острый панкреатит
- •Глава 28 парентеральное питание
- •Энергетический баланс
- •Азотистый баланс
- •Потребность организма в белке
- •Источники энергии
- •Определение дозы инсулина, необходимой для введения при парентеральном питании [по п. Марине, 1998]
- •Концентрация глюкостерила и скорость введения
- •Состав 1 л липовеноза
- •Жировые эмульсии
- •Источники аминного азота. Аминокислотные смеси и белковые гидролизаты
- •Рациональные программы парентерального питания
- •Вариант полного парентерального питания
- •Особенности парентерального питания при различных заболеваниях
- •Непереносимость питательных веществ
- •Потребность в жидкости
- •Электролиты
- •Микроэлементы
- •Примерные суточные дозы микроэлементов для больного, находящегося в отделении интенсивной терапии
- •Витамины
- •Рекомендуемые суточные дозы витаминов
- •Раздел VI интенсивная терапия болевого синдрома и нарушений сознания
- •Глава 29
- •Боль, болевой синдром, психологический стресс и фармакотерапия
- •Принципы обезболивающей терапии
- •Методы оценки болевых ощущений у пациентов в отделении реанимации и блока интенсивной терапии
- •Психологический и эмоциональный стресс
- •Глава 30 обморок, делирий, кома обморок
- •Эпилептические припадки
- •Спутанность сознания и делирий
- •Коматозные состояния
- •Алгоритмы реанимационных мероприятий
- •Общая стратегия защиты головного мозга (по в. Фитч, 1995)
- •Раздел VII анатомо-топографические основы в практике врача отделения интенсивной терапии и реанимации
- •Глава 31 клиническая анатомия в практике отделения интенсивной терапии
- •Приблизительные размеры эндотрахеальных трубок для лиц различного возраста
- •Часть II реанимация
- •Глава 32
- •Сердечно-легочная реанимация
- •Основные мероприятия слр
- •Устранение обструкции дыхательных путей инородным телом
- •Искусственная вентиляция легких
- •Наружный массаж сердца
- •Контроль за эффективностью слр
- •Специализированные реанимационные мероприятия
- •Алгоритм при фибрилляции желудочков (по к. Гроер, д. Кавалларо)
- •(По к.Гроер, д.Кавалларо)
- •Асистолия
- •Синусовая брадикардия
- •Атриовентрикулярная блокада или медленный идиовентрикулярный ритм с артериальной гипотензией
- •Особенности сердечно-легочной реанимации у детей
- •Постреанимационный период
- •Глава 33 новые принципы реанимации
- •Лекарственная терапия при остановке сердца
- •Электрическая дефибрилляция сердца
- •Прекордиальный удар
- •Глава 34 программа обучения по сердечно-легочной реанимации
- •Каскадный принцип обучения
- •Дополнительные элементы обучения для студентов медицинских институтов
- •Часть III первая помощь
- •Глава 35
- •Общие принципы оказания первой помощи
- •Искусственная вентиляция легких
- •Глава 36 первая помощь при несчастных случаях и террористических актах
- •Первая медицинская помощь при тяжелых травмах различной этиологии
- •Поражение ударной волной
- •Автоаварии
- •Поражение электрическим током
- •Глава 37 первая помощь при отравлениях
- •Методы детоксикационной терапии
- •I. Методы стимуляции естественных процессов очищения организма Стимуляция выведения
- •II. Антидотная (фармакологическая) детоксикация.
- •III. Методы искусственной физико-химической детоксикации.
- •Отравление окисью углерода и бытовым газом
- •Отравление барбитуратами
- •Острые отравления алкоголем и его суррогатами
- •Острое отравление метиловым спиртом
- •Острое отравление этиленгликолем
- •Отравления фосфорорганическими соединениями
- •Внутривенное введение лекарственных средств при возбуждении больного в отделении интенсивной терапии [Fricchione g., Kohane d.S., Daly r., Todres d 1998]
- •Оценка возраста
Буферные системы
Буферные системы — это биологические жидкости организма. Их защитная роль в поддержании нормального рН крови чрезвычайно велика.
Любая буферная система представляет собой смесь слабой кислоты и ее соли, образованной сильным основанием. Попадание в плазму сильной кислоты вызывает реакцию буферных систем, в результате которой сильная кислота превращается в слабую. То же происходит и при действии на биологические жидкости сильного основания, которое после взаимодействия с буферными системами превращается в слабое основание. В результате указанных процессов изменения рН либо не наступают, либо являются минимальными.
Гидрокарбонаты обеспечивают 53 % буферной способности крови, 47 % ее относятся к негидрокарбонатным системам: гемоглобиновой (35 %), протеиновой (7 %) и фосфорной (5 %). Кровь составляет только 1/5 общей буферной емкости организма.
Гидрокарбонатная система. Происхождение гидрокарбонатной системы тесно связано с метаболизмом органического углерода, поскольку конечным продуктом его является СО2 или НСО3. Гидрокарбонатный буфер является главной и единственной буферной системой интерстициальной жидкости. Образующаяся в клетках СО2 вступает в реакцию с водой, в результате чего получается угольная кислота, которая диссоциирует на ионы Н+ и НСО3. При определенных обстоятельствах (сдвиг реакции вправо или влево) будет преобладать тот или иной тип реакции:
Выделение СО2 происходит через легкие, ионы H+ и НСО3 выделяются через почки. Избыточное образование СО2 ведет к усиленной элиминации его через легкие, и равновесие восстанавливается.
Гемоглобиновая система. Буферное действие молекулы гемоглобина происходит за счет имидазольной группы гистидина. Диссоциация этой имидазольной группы зависит от насыщения кислородом: оксигенированный гемоглобин (HbО2), являясь более сильной кислотой, чем деоксигенированный, отдает больше H+. Благодаря этому облегчается связывание СО2 в тканевых капиллярах и освобождение его в легочных, и транспорт СО2 происходит при меньших сдвигах рН, чем при постоянном SO2 (эффект Кристиансена — Дугласа — Холдена).
Протеиновая система. Белки плазмы, являясь амфолитами, в крови обладают свойствами кислот. Они составляют наибольшую часть пула анионов плазмы. Изменение содержания альбуминов, протеинов и аномальных белков плазмы оказывает существенное влияние на величину так называемой анионной разницы.
Фосфатная система. Эта система — первичный и вторичный фосфат (Н3РО- и НРО-) имеет значение для внутриклеточного пространства и при забуферивании мочи. Анионы РО-, как и органические кислоты, относятся к группе неизменяемых анионов, играющих важную роль в изменениях метаболического компонента КОС.
КОС и рН крови зависят от четырех факторов: продукции фиксированных (нелетучих) кислот, буферирования фиксированных кислот, элиминации фиксированных кислот, элиминации летучей (углеродной) кислоты.
Роль легких в регуляции КОС. Организм — своего рода открытая система, в которой метаболические процессы определяют интенсивность обмена энергии с внешней средой. Процессы образования СО2 в тканях, взаимодействия с гидрокарбонатным буфером и выделения СО2 легкими находятся в состоянии биологического равновесия.
ЗАКЛАДКА (ПРОВЕРИТЬ ФОРМУЛУ)
В нормальных условиях источником энергии является аэробный гликолиз: С6Н.зОб -> 6СО2 + Н2О.
Поскольку СО2 легко диффундирует через полупроницаемые мембраны, РСО2 приблизительно одинаково во всех жидкостных средах организма.
За сутки в клетках образуется от 13 000 до 20 000 ммоль СО2. Нормально функционирующие легкие могут элиминировать любое количество образующейся СО2 в тканях. Равновесие достигается в том случае, если количество образованной СО2 равно количеству элиминированной.
Роль почек в регуляции КОС. Почки непосредственно экскретируют Н+ из кислой среды и НСО3 из щелочной. При снижении уровня гидрокарбоната в плазме проксимальные канальцы реабсорбируют его до концентрации 25 ммоль/л. в результате чего гидрокарбонатный буфер восстанавливается (механизм щажения оснований путем ионогенеза). На каждый восстановленный НСО3 с мочой экскретируется один H+. Значительное количество Н+ выделяется почками в связанной форме — в норме за сутки через почки выделяется 100—200 ммоль H+. Биологическое равновесие достигается в том случае, если количество образованных в тканях кислот равно количеству выделенных.
Ликвидация протонов с помощью фосфатной системы происходит путем образования дегидрофосфата из монофосфата:
Действие этого механизма непродолжительное. При его истощении реабсорбция Na+ и НСО3 осуществляется за счет аммониогенеза. При увеличении количества ионов во внеклеточной жидкости в клетках почечных канальцев образуется аммиак путем дезаминирования некоторых аминокислот. Аммиак легко диффундирует в канальцевую мочу, где соединяется с ионами Н+:
NН3 + Н+ =NH4+
Образованные ионы аммония не могут вновь проникнуть через клеточную мембрану. Они присоединяют Сl- и в виде NН4Cl выводятся с мочой. Ионы Na+ освобожденные от Сl-, в клетках почечных канальцев соединяются с освобожденными от H+ ионами НСО3 и в виде гидрокарбоната поступают в венозную кровь.
Реакции буферных систем крови при увеличении в ней концентрации протонов происходят обычно до включения почечного механизма компенсации. Почки лишь постепенно увеличивают выделение кислот, иногда в течение нескольких дней, что и является причиной медленной компенсации ацидоза.
Основные компоненты КОС:
• рН — отрицательный десятичный логарифм концентрации H+, величина активной реакции крови. В норме рН артериальной крови 7,4 (7,36—7,44), венозной крови 7,37 (7,32—7,42). Внутриклеточное значение рН 6,8—7,0;
• РСO2 — респираторный компонент КОС. В норме PCO2 артериальной крови равно 40 (36—44) мм рт.ст., венозной крови — 46 (42—55) мм рт.ст.;
• НСО3 — содержание аниона гидрокарбоната (бикарбоната) в плазме крови. В норме составляет 22—25 ммоль/л в артериальной и 25— 28 ммоль/л в венозной крови. Увеличение содержания НСО3 указывает на метаболический алкалоз, а снижение — на метаболический ацидоз;
• BE — избыток или дефицит оснований, отражающий состояние метаболического компонента КОС. Тесно коррелирует с уровнем НСО3. В норме нет ни избытка, ни дефицита оснований и BE равен нулю с колебаниями от -2,3 до +2,3 ммоль/л. Увеличение оснований в алкализированной крови соответствует понятию избытка оснований и обозначается символом BE со знаком «+». Например, величина ВЕ=+5 ммоль/л указывает на то, что в 1 л крови пациента имеется избыток оснований, равный 5 ммоль или дефицит ионов Н+ равный также 5 ммоль. Уменьшение оснований в ацидотической крови соответствует понятию дефицита оснований и обозначается символом BE со знаком «—»;
• ВВ — буферные основания, сумма всех буферных анионов: гидрокарбоната, фосфата, белков и гемоглобина в миллимолях на 1 л крови при 37 °С и РСO2 40 мм рт.ст. В норме ВВ составляет 50 (40— 60) ммоль/л, отражает только метаболические влияния.
Величина рН крови зависит от двух величин: РСО3 крови (респираторный компонент) и содержания оснований в ней (BE, НСО3), что составляет метаболический (нереспираторный) компонент. Последний остается постоянным при острых сдвигах РСО2, хотя хронические изменения РСО2 связаны с компенсаторными изменениями этих показателей.