
- •А.Н. Шихов, д.А. Шихов Архитектурная и строительная физика
- •Глава 1. Строительная климатология
- •Глава 2. Строительная теплотехника
- •Глава 3. Архитектурная и строительная светотехника
- •Глава 4. Архитектурная акустика и звукоизоляция помещений
- •4.9. Архитектурная акустика
- •Предисловие
- •Введение
- •Глава 1 Строительная климатология
- •1.1. Связь между климатом и архитектурой зданий
- •1.2. Климатические факторы и их роль при проектировании зданий и сооружений
- •1.3 Климатическое районирование
- •1.4. Архитектурно-климатические основы проектирования зданий
- •1.5. Архитектурный анализ климатических условий погоды
- •Глава 2 Строительная теплотехника
- •2.1. Общие положения
- •2.2. Виды теплообмена
- •2.3. Теплопередача через ограждения
- •2.4. Сопротивление теплопередачи через однослойные и многослойные ограждающие конструкции, выполненные из однородных слоев
- •2.5. Расчет температуры внутри ограждающих конструкций
- •2.6. Графический метод определения температуры внутри многослойной ограждающей конструкции (метод Фокина-Власова)
- •2.7. Влияние расположения конструктивных слоев на распределение температуры внутри ограждающих конструкций
- •2.8. Методика проектирования тепловой защиты зданий
- •2.9. Исходные данные для проектирования тепловой защиты зданий
- •2.9.1. Параметры внутреннего воздуха помещений
- •2.9.2. Наружные климатические условия
- •2.9.3. Расчетные характеристики строительных материалов и конструкций
- •2.9.4. Расчет отапливаемых площадей и объемов здания
- •2.10. Определение нормируемого (требуемого) сопротивления теплопередаче ограждающих конструкций
- •2.11. Расчет общего или приведенного сопротивления теплопередаче ограждающих конструкций
- •2.12. Конструктивное решение наружных ограждающих конструкций
- •2.13. Определение санитарно-гигиенических показателей тепловой защиты зданий
- •2.14. Расчет удельного расхода тепловой энергии на отопление зданий
- •2.15. Влажность воздуха и конденсация влаги в ограждениях
- •2.15.1 Расчет ограждающих конструкций на конденсацию водяного пара
- •2.15.2. Графо-аналитический метод определения зоны конденсации внутри многослойной ограждающей конструкции
- •2.15.3. Паропроницаемость и защита от переувлажнения ограждающих конструкций
- •2.16. Воздухопроницаемость ограждающих конструкций
- •2.17. Теплоустойчивость ограждающих конструкций
- •2.17.1. Расчет теплоустойчивости ограждающих конструкций в теплый период года
- •2.17.2. Теплоусвоение поверхности полов
- •2.18. Повышение теплозащитных свойств существующих зданий
- •2.19. Энергетический паспорт здания
- •Контрольные вопросы
- •Глава 111 Архитектурная и строительная светотехника
- •3.1. Основные понятия, величины и единицы измерения
- •3.2. Световой климат
- •3.3. Количественные и качественные характеристики освещения
- •3.4. Естественное освещение зданий
- •3.5. Естественное и искусственное освещение зданий
- •3.6. Выбор систем естественного освещения помещений и световых проемов
- •3.7. Нормирование естественного освещения
- •3.8. Проектирование естественного освещения
- •3.8.1. Определение площади световых проемов жилых и общественных зданий при боковом или верхнем естественном освещении помещений
- •3.8.2. Расчет площади световых проемов производственных зданий при боковом или верхнем естественном освещении помещений
- •3.9. Проверочный расчет естественного освещения помещений
- •3.9.1. Последовательность проведения проверочного расчета при боковом освещении производственных зданий
- •3.9.2. Расчет естественного освещения производственных помещений при верхнем и комбинированном расположении светопроемов
- •3.9.3. Проверочный расчет естественного освещения при боковом размещении световых проемов в жилых и общественных зданиях
- •3.9.4. Последовательность проведения проверочного расчета при верхнем или комбинированном освещении жилых и общественных зданий
- •3.10. Расчет времени использования естественного освещения в помещениях
- •3.11. Совмещенное освещение зданий
- •3.13. Нормирование и проектирование искусственного освещения помещений
- •3.14. Архитектурная светотехника
- •3.14.1. Нормирование и проектирование освещения городов
- •Проектирование освещения архитектурных ансамблей
- •3.15. Светоцветовой режим помещений и городской застройки
- •3.16. Инсоляция и защита помещений от солнечных лучей
- •3.17. Солнцезащита и светорегулирование в зданиях
- •3.18. Экономическая эффективность использования инсоляции и солнцезащиты
- •Глава 4 Архитектурная акустика и звукоизоляция помещений
- •4.1. Общие понятия о звуке и его свойствах
- •4.2. Источники шума и их шумовые характеристики
- •4.3. Нормирование шума и звукоизоляция ограждений
- •4.4. Распространение шума в зданиях
- •4.5. Звукоизоляция помещений от воздушного и ударного шума
- •4.5.1. Определение индекса изоляции воздушного шума для вертикальных однослойных плоских ограждающих конструкций сплошного сечения
- •Границ 1/3 - октавных полос
- •4.5.2. Определение индекса изоляции воздушного шума для каркасно-обшивных перегородок
- •4.5.3. Определение индекса изоляции воздушного шума для междуэтажных перекрытий
- •Расчет междуэтажных перекрытий на ударное воздействие шума
- •4.6. Измерение звукоизолирующих свойств ограждающих конструкций в акустических камерах
- •Мероприятия, обеспечивающие нормативную звукоизоляцию помещений
- •Защита от шума селитебных территорий городов и населенных пунктов
- •4.9. Архитектурная акустика
- •4.9.1. Оценка акустических качеств залов
- •Экспериментальные способы проверки акустических качеств залов
- •4.10. Общие принципы акустического проектирования залов
- •4.11. Специфические особенности акустического проектирования залов различного функционального назначения
- •4. 12. Видимость и обозреваемость в зрелищных сооружениях
- •Общие принципы проектирования беспрепятственной видимости в зрительных залах
- •4.12.2. Обеспечение беспрепятственной видимости в зрительных залах
- •4.13. Расчет беспрепятственной видимости в зрительных залах
- •Контрольные вопросы
- •Основные термины и определения
- •Примеры расчетов звукоизоляции ограждающих конструкций (примеры взяты из сп 23-103-03)
- •Примеры расчета по беспрепятственной видимости и акустике зрительных залов
- •Примеры светотехнического расчета гражданских и промышленных зданий
- •Примеры из области архитектурного освещения зданий
- •Примеры расчета продолжительности инсоляции зданий
Мероприятия, обеспечивающие нормативную звукоизоляцию помещений
Правильно выполненный расчет не обеспечивает необходимую звукоизоляцию помещений, если в период проектирования и строительства не будут выполняться мероприятия, обеспечивающие нормативную звукоизоляцию.
В современных многоэтажных зданиях для борьбы с шумом, возникающим при работе инженерного оборудования (например, вентиляционных, насосных или лифтовых агрегатов) следует ослаблять шум в самом источнике шума, используя звукоизоляционные кожухи, глушители, экраны и т.п. или рационально располагая агрегаты, удаляя от помещений, требующих тишину. Целесообразно в помещениях, в которых располагаются шумные агрегаты применять полы на упругом основании (плавающие полы) или проектировать ограждающие конструкции помещений с шумным оборудованием с требуемой звукоизоляцией.
Полы на упругом основании (плавающие полы) следует выполнять по всей площади помещения в виде железобетонной плиты толщиной не менее 60-80 мм. В качестве упругого слоя рекомендуется применять стекловолокнистые или минераловатные плиты или маты плотностью 50-100 кг/м3
Необходимо также изолировать вибрирующие механизмы, от которых по конструкциям здания распространяются упругие волны, создающие шум в помещениях. С целью ослабления вибрации между механизмом и его основанием следует размещать упругие элементы, называемые амортизаторами, в виде стальных пружин или прокладок из упругих материалов (резины, пробки, войлока, асбеста и т.п.)
Лифтовые шахты целесообразно располагать в лестничной клетке между лестничными маршами. Когда этого сделать нельзя, необходимо чтобы к встроенной лифтовой шахте примыкали помещения, не требующие повышенной защиты от шума (холлы, коридоры, кухни, санитарные узлы). Все лифтовые шахты должны иметь самостоятельный фундамент и быть отделены от других конструкций здания акустическим швом шириной не менее 40-50 мм.
При проектировании ограждающих конструкций необходимо использовать материалы с плотной структурой, не имеющей сквозных пор. Ограждения, выполненные из материалов со сквозной пористостью, должны иметь наружные слои из плотного материала, бетона или раствора.
Для повышения изоляции воздушного шума стены или перегородки, выполненных из железобетона или кирпича, целесообразно использовать дополнительную обшивку на относе по деревянному или металлическому каркасу с заполнением воздушного пространства толщиной 40-60 мм мягкими звукопоглощающими материалами (минераловатные или стекловолокнистые плиты и т.п.). Оптимальная толщина заполнения составляет 2/3 толщины воздушного промежутка.
В конструкциях каркасно-обшивных перегородок следует предусматривать точечное крепление листов к каркасу с шагом не менее 300 мм. Если применяют два слоя листов обшивки с одной стороны каркаса, то они не должны склеиваться между собой. Шаг стоек каркаса и расстояние между его горизонтальными элементами рекомендуется принимать не менее 600 мм. Для улучшения звукоизоляции каркасно-обливных перегородок следует заполнять воздушный промежуток звукопоглощающими материалами и устраивать самостоятельные каркасы для каждой из обшивок, а в необходимых случаях применять двух- или трехслойные обшивки с каждой из сторон перегородки.
Внутренние стены или перегородки, разделяющие жилые и встроенные шумные помещения, к которым предъявляются повышенные требования по изоляции воздушного шума (требуемый индекс Rw = 54 - 59 дБ), следует проектировать двойными с полным разобщением их элементов между собой и от примыкающих конструкций, исключающим косвенную передачу звука в изолируемое помещение по примыкающим стенам и перекрытиям. Величина промежутка между перегородками должна быть более 40 мм.
Междуэтажные перекрытия с повышенными требованиями к изоляции воздушного шума (Rw = 57 - 62 дБ), разделяющие жилые и встроенные шумные помещения, следует проектировать с использованием плит из монолитного железобетона достаточной толщины (например, каркасно-монолитная или монолитная конструкция первого этажа).
Повышение звукоизолирующей способности междуэтажного перекрытия из пустотных плит можно достичь путем заполнения пустот сухим прокаленным песком или другим пористым заполнителем (керамзит, шлак и др.) с предельной крупностью 10-20 мм. Площадь заполнения пустот должна составлять не менее 25% сечения плиты.
Другим конструктивным решением при размещении шумных помещений в первых нежилых этажах является устройство промежуточного (технического) 2-го этажа. При этом необходимо выполнить расчеты, подтверждающие достаточную звукоизоляцию жилых помещений. Во всех случаях размещения в первых нежилых этажах помещений с источниками шума рекомендуется устройство в них подвесных потолков, значительно увеличивающих звукоизоляцию перекрытий.
В конструкциях перекрытия не рекомендуется применять полы из линолеумов на войлочной (волокнистой) основе, снижающих изоляцию воздушного шума на 1 дБ. Вместо них целесообразно использовать линолеумы со вспененной подосновой, которые не влияют на изоляцию воздушного шума, но повышают изоляцию ударного шума при соответствующей толщине вспененного слоя.
Для предотвращения передачи корпусного шума из нижнего шумного помещения в расположенное выше жилое следует в шумных помещениях выполнять плавающие полы, а в качестве чистого покрытия применять ворсовые или ковровые покрытия.
Трубы водяного отопления, водоснабжения и т.п. должны пропускаться через междуэтажные перекрытия и межкомнатные стены (перегородки) в эластичных гильзах (из пористого полиэтилена и других упругих материалов), допускающих температурные перемещения и деформации труб без образования сквозных щелей.