Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭЛЕМЕНТЫ КОМБИНАТОРИКИ.doc
Скачиваний:
25
Добавлен:
17.11.2019
Размер:
91.65 Кб
Скачать

Элементы комбинаторики.

3.1 Правила суммы и произведения.

Комбинаторика (или теория соединений) – раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, удовлетворяющих тем или иным условиям, можно составить из заданных объектов.

В случае, когда пересечение множеств А и В не пустое, справедливо равенство: n(АВ) = n(А) + n(В) – n(АВ).

Число элементов в объединении трех множеств можно найти по формуле

n(АВС) = n(А) + n(В) + n(С) - n(АВ) -n(АС) - n(ВС) - - n(АВС)

Пример. Из 40 студентов группы 35 человек успешно сдали экзамен по математике, а 37 – по русскому языку. Двое студентов получили неудовлетворительные оценки по обоим предметам. Сколько студентов имеют академическую задолженность?

Решение. Пусть А – множество студентов, получивших неудовлетворительную оценку по математике, тогда n(А) = 40 – 35 = 5; а В – множество студентов, получивших неудовлетворительную оценку по русскому языку, тогда n(В) = 40 – 37 = 3. Тогда число студентов, имеющих академическую задолженность есть n(АВ). Значит, n(АВ) = n(А) + n(В) - n(АВ) = 5 + 3 – 2 = 6.

В случае если АВ = , то n(АВ) = n(А) + n(В)

В комбинаторике это правило называется правилом суммы и формулируется следующим образом: если элемент х можно выбрать k способами, а элемент у – m способами и, причем ни один способ выбора элемента х не совпадает с каким-либо способом выбора элемента у, то выбор «х или у» можно сделать k + m способами.

Для множеств также справедливо n(АВ) = n(А)  n(В)

В комбинаторике это правило называется правилом произведения и формулируется следующим образом: если элемент х можно выбрать k способами, и если после каждого такого выбора элемент у можно выбрать m способами, то выбор упорядоченной пары (х,у) , то есть выбор «и х, и у» можно осуществить k  m способами.

Пример. Из города А в город В ведут 3 дороги, а из В в С ведут 2 дороги. Сколькими способами можно проехать из А в С через В?

Решение. Если обозначить числами 1, 2, 3, а дороги из В в С – буквами х и у, то каждый вариант пути из А в С задается упорядоченной парой и числа и буквы. Но число мы можем выбрать тремя способами, а букву – двумя, поэтому число таких упорядоченных пар равно 3  2 = 6.

3.2 Размещения.

Пусть n(А) = m. Кортеж длины k (km), компонентами которого являются элементы множества А, причем все компоненты являются попарно различными, называется размещением без повторений из m элементов по k элементов.

Для любого множества А такого, что n(А) = m число всевозможных размещений из m элементов по k обозначается

И вычисляется по формуле

Пример. В шахматном турнире участвуют 5 школьников и 15 студентов. Сколькими способами могут распределиться места, занятые в турнире школьниками, если известно, что никакие два участника не набрали одинакового количества очков?

Решение. Всего в турнире 20 участников. Следовательно, из 20 мест школьникам принадлежат 5. Поэтому решение задачи связано с образованием всевозможных кортежей длины 5 из элементов множества, в котором 20 элементов, то есть речь идет о размещениях без повторений из 20 элементов по 5 элементов.

Получим

Пусть n(А) = m. Кортеж длины k, компонентами которого являются элементы множества А, называются размещением с повторениями из m элементов по k элементов.

Для любого множества А такого, что n(А) = m, число возможных размещений с повторениями из m элементов по k обозначается и вычисляется по формуле .

Пример. Имеется 5 различных стульев и 7 рулонов обивочной ткани различных цветов. Сколькими способами можно осуществить обивку стульев?

Решение. Так как стулья различны, то каждый способ обивки есть кортеж длины 5, составленный из элементов данного множества цветов ткани, содержащего 7 элементов. Значит, всего способов обивки стульев столько, сколько имеется таких кортежей, то есть размещений с повторениями из 7 элементов по 5. Получим .