- •11. Оценка скорости передачи информации. Формирование сигнала при модемной передаче.
- •12. Способы модуляции при передаче по аналоговым каналам. Способы обеспечения правильности передачи информации.
- •13. Модемы. Основные модемные протоколы физического уровня. Организация дуплексного обмена.
- •14. Модемы. Принципы работы современных высокоскоростных протоколов. Организация дуплексного обмена. Общие принципы передачи в технологиях xDsl.
- •15. Лвс. Моноканал. Методы доступа к моноканалу.
- •16. Случайные, детерминированные и комбинированные методы доступа к моноканалам лвс.
- •17. Множественный доступ с контролем несущей и обнаружением конфликтов (csma/cd). Разновидности сетей Ethernet.
- •18. Канальные кадры в различных вариантах Ethernet. Адресация в технологии Ethernet.
- •19. Оборудование для организации лвс по технологии 10Base-2. Основные характеристики.
- •20. Оборудование для организации лвс по технологии 10Base-5. Основные характеристики.
- •41. Эталонная модель взаимодействия открытых систем, уровни и протоколы. Функции сетевого и транспортных уровней.
- •42. Стек протоколов ipx/spx. Клиент-серверное взаимодействие для протокола ipx.
- •43. Стек протоколов ipx/spx. Клиент-серверное взаимодействие для протокола spx.
- •45. Адресация в Internet. Версии протокола ip. Общий принцип маршрутизации в сети на основе ip.
- •46. Адресное пространство Internet. Основные способы экономии ip адресов.
- •47. Подсети ip с использованием классов и масок. Преимущества технологии cidr.
- •48. Стандартные протоколы обмена маршрутной информацией. Принцип работы протокола rip.
- •49. Стандартные протоколы обмена маршрутной информацией. Принцип работы протокола ospf.
- •50. Вспомогательные и сопутствующие стеку tcp/ip протоколы и сервисы. Протоколы arp/rarp.
- •68. Технологии глобальных коммуникаций на базе виртуальных каналов. Особенности технологий Frame Relay и X.25.
- •69.Особенности коммуникаций на базе виртуальных каналов. Технология atm. См. Первый абзац вопроса 68.
- •70. Цифровые телекоммуникационные сети. Цифровая иерархия. Технологии pdh, sdh.
- •71. Технологии беспроводных сетей. Общая характеристика стандарта Radio Ethernet. Особенности метода доступа к каналу.
- •72. Технологии беспроводных сетей. Методы передачи с расширением спектра. Типовые топологии и разновидности оборудования Radio Ethernet.
72. Технологии беспроводных сетей. Методы передачи с расширением спектра. Типовые топологии и разновидности оборудования Radio Ethernet.
Технология беспроводных сетей развивается довольно быстро. Эти сети удобны для подвижных средств в первую очередь.
Как и все стандарты IEEE 802, 802.11 работает на нижних двух уровнях модели ISO/OSI, физическом уровне и канальном уровне.
Основная архитектура, особенности и службы 802.11b определяются в первоначальном стандарте 802.11. Спецификация 802.11b затрагивает только физический уровень, добавляя лишь более высокие скорости доступа.
802.11 определяет два типа оборудования – клиент, который обычно представляет собой компьютер, укомплектованный беспроводной сетевой интерфейсной картой (Network Interface Card, NIC), и точку доступа (Access point, AP), которая выполняет роль моста между беспроводной и проводной сетями. Точка доступа обычно содержит в себе приёмопередатчик, интерфейс проводной сети (802.3), а также программное обеспечение, занимающееся обработкой данных. В качестве беспроводной станции может выступать ISA, PCI или PC Card сетевая карта в стандарте 802.11.
Стандарт IEEE 802.11 определяет два режима работы сети – режим "Ad-hoc" и клиент/сервер (или режим инфраструктуры – infrastructure mode). В режиме клиент/сервер (рис. 2) беспроводная сеть состоит из как минимум одной точки доступа, подключенной к проводной сети, и некоторого набора беспроводных оконечных станций. Такая конфигурация носит название базового набора служб (Basic Service Set, BSS). Два или более BSS, образующих единую подсеть, формируют расширенный набор служб (Extended Service Set, ESS). Так как большинству беспроводных станций требуется получать доступ к файловым серверам, принтерам, Интернет, доступным в проводной локальной сети, они будут работать в режиме клиент/сервер.
Рис. 2. Архитектура сети "клиент/сервер".
Режим "Ad-hoc" (также называемый точка-точка, или независимый базовый набор служб, IBSS) – это простая сеть, в которой связь между многочисленными станциями устанавливается напрямую, без использования специальной точки доступа (рис. 3). Такой режим полезен в том случае, если инфраструктура беспроводной сети не сформирована (например, отель, выставочный зал, аэропорт), либо по каким-то причинам не может быть сформирована.
Рис. 3. Архитектура сети "Ad-hoc".
На физическом уровне определены два широкополосных радиочастотных метода передачи и один – в инфракрасном диапазоне.
Метод передачи в инфракрасном диапазоне (IR)
Реализация этого метода в стандарте 802.11 основана на излучении ИК передатчиком ненаправленного (diffuse IR) сигнала. Вместо направленной передачи, требующей соответствующей ориентации излучателя и приёмника, передаваемый ИК сигнал излучается в потолок. Затем происходит отражение сигнала и его приём. Такой метод имеет очевидные преимущества по сравнению с использованием направленных излучателей, однако есть и существенные недостатки – требуется потолок, отражающий ИК излучение в заданном диапазоне длин волн (850 – 950 нм); радиус действия всей системы ограничен 10 метрами. Кроме того, ИК лучи чувствительны к погодным условиям, поэтому метод рекомендуется применять только внутри помещений.
Метод FHSS
При использовании метода частотных скачков полоса 2,4 ГГц делится на 79 каналов по 1 МГц. Отправитель и получатель согласовывают схему переключения каналов (на выбор имеется 22 таких схемы), и данные посылаются последовательно по различным каналам с использованием этой схемы. Каждая передача данных в сети 802.11 происходит по разным схемам переключения, а сами схемы разработаны таким образом, чтобы минимизировать шансы того, что два отправителя будут использовать один и тот же канал одновременно.
Т.к. под один канал выделяется ровно 1 МГц, это вынуждает FHSS системы использовать весь диапазон 2,4 ГГц. Это означает, что должно происходить частое переключение каналов.
Метод DSSS
Метод DSSS делит диапазон 2,4 ГГц на 14 частично перекрывающихся каналов. Для того, чтобы несколько каналов могли использоваться одновременно в одном и том же месте, необходимо, чтобы они отстояли друг от друга на 25 МГц (не перекрывались), для исключения взаимных помех. Таким образом, в одном месте может одновременно использоваться максимум 3 канала. Данные пересылаются с использованием одного из этих каналов без переключения на другие каналы.
73. Спутниковые каналы. Геостационарные и низкоорбитальные спутники. Асимметричные и симметричные спутниковые каналы.
В спутниковых телекоммуникациях передача ведется на более высокой частоте, чем прием сигнала со спутника. Обычный спутник обладает 12-20 транспондерами (приемопередатчиками) (широкополосные усилители).
Современные спутники используют узкоапертурную технологию передачи vsat (very small aperure terminals). Такие терминалы используют антенны диаметром 1 метр. При этом канал к спутнику имеет пропускную способность 19,2 кбит/с, а со спутника более 512 кбит/c. Непосредственно такие терминалы не могут работать друг с другом, разумеется через телекоммуникационный спутник. Для решения этой проблемы используются промежуточные наземные антенны с большим усилением, что, правда увеличивает задержку. Схема связей в технологии VSAT.
Рис. 3.3.8. Схема спутниковой связи VSAT
Терминальные антены vsat обеспечивают широкополосность до 64 кбит/с. Такие небольшие антенны не позволяют таким терминалам общаться непосредственно. На рис. 3.3.8. станции А и Б не могут непосредственно друг с другом. Для передачи данных используется промежуточная станция с большой антенной и мощностью (на рис. антенна В). Для создания постоянных каналов телекоммуникаций служат геостационарные спутники, висящие над экватором на высоте около 36000 км.
Теоретически три таких спутника могли бы обеспечить связью практически всю обитаемую поверхность земли (см. рис. 3.3.9.).
Рис. 3.3.9.
Реально геостационарная орбита переполнена спутниками различного назначения и национальной принадлежности. Обычно спутники помечаются географической долготой мест, над которым они висят. На практике геостационарный спутник не стоит на месте, а выполняет движение по траектории, имеющей вид цифры 8. Из-за энергетических проблем телекоммуникационный спутник не может обеспечить высокого уровня сигнала. По этой причине наземная антенна должна иметь большой диаметр, а приемное оборудование низкий уровень шума.
Число позиций для размещения геостационарных спутников ограничено.
В последнее время для телекоммуникаций планируется применение так называемых низколетящих спутников (<1000 км; период обращения ~1 час). Эти спутники движутся по эллиптическим орбитам и каждый из них по отдельности не может гарантировать стационарный канал, но в совокупности эта система обеспечивает весь спектр услуг (каждый из спутников работает в режиме “запомнить и передать”). Из-за малой высоты полета наземные станции в этом случае могут иметь небольшие антенны и малую стоимость.
Существует несколько способов работы совокупности наземных терминалов со спутником. При этом может использоваться мультиплексирование по частоте (FDM), по времени (TDM), CDMA (Code Division Multiple Access) или метод запросов.
Схема запросов предполагает, что наземные станции образуют логическое кольцо, вдоль которого двигается маркер. Наземная станция может начать передачу на спутник, лишь получив этот маркер.
Метод мультиплекcирования по частоте (FDM) является старейшим и наиболее часто используемым. Типичный транспондер с полосой 36 Мбит/с может использован для получения 500 64кбит/с ИКМ-каналов, каждый из которых работает со своей уникальной частотой, чтобы исключить интерференцию с другими. Соседние каналы должны отстоять на достаточном расстоянии друг от друга. Кроме того, должен контролироваться уровень передаваемого сигнала, так как при слишком большой выходной мощности могут возникнуть интерференционные помехо в соседнем канале. Если число станций невелико и постоянно, частотные каналы могут быть распределены стационарно. Но при переменном числе терминалов или при заметной флуктуации загрузки приходится переходить на динамическое распределение ресурсов.
Метод мультиплекирования по времени сходен с FDM и довольно широко применяется на практике. Здесь также необходима синхронизация для доменов. Присвоение доменов наземным станциям может выполняться централизовано или децентрализовано.
Метод CDMA (Code Division Multiple Access) не требует синхронизации и является полностью децентрализованным. Как и другие методы он не лишен недостатков. Во-первых, емкость канала CDMA в присутствии шума и отсутствии координации между станциями обычно ниже, чем в случае TDM. Во-вторых, система требует быстродействующего и более дорогого оборудования.
Спутниковые системы могут легко поддержать асимметричные связи, которые предоставляют услуги, где скорости передачи данных различны в различных направлениях. Это используется для доступа в Интернет.
Симметричные спутниковые каналы используют симметричные связи, т.е переданный поток данных равен полученному потоку данных. Другими словами движение в обоих направлениях одинаково.
Рис1. в лекциях
Рис.2 Олифер стр.133 рис.2.13
Рис.3 Олифер с.204
Рис.4 Олифер с.210 рис.3.9
Рис.5 Олифер с.207
Рис.6, 7, 8 Олифер с 204 рис 1,2,3
Рис.9 в лекциях
Рис 10. прилагается