
- •1. Поняття про розсіювання електронів.
- •2. Пружне розсіювання.
- •3. Наслідки не пружного розсіювання.
- •4. Втрати енергії електроном пучка.
- •5. Поняття про область взаємодії.
- •6. Суть методу Монте-Карло.
- •7. Вплив атомного номера на розміри та форму області взаємодію.
- •8. Залежність розмірів області взаємодії від енергії пучка.
- •9. Пояснити залежність розмірів області взаємодії від кута падіння пучка.
- •10. Довжина пробігу електронів згідно Бете.
- •11. Довжина пробігу електронів згідно з Канайє-Окаяме
- •12. Порівняння значення довжини пробігу з даними про розміри області взаємодії.
- •13. Поняття про відбиті електрони, ймовірність їх утворення, коефіцієнт відбиття.
- •14. Залежність коефіцієнта відбиття від атомного номера, енергія пучка та кута нахилу.
- •15. Розподіл відбитих електронів.
- •16. Вторинні електрони.
- •17. Безперервне рентгенівське випромінювання.
- •18. Механізм утворення характеристичного рентгенівського випромінювання.
- •20. Ймовірність виникнення характеристичного рентгенівського випромінювання.
- •21. Інтенсивність рентгенівського випромінювання.
- •22. Глибина генерації та густина характеристичного рентгенівського випромінювання.
- •23. Катодолюмінісценція.
- •25. Блок схема рем
- •26. Електронно-оптична та детекторна система
- •27. Побудова зображення
- •28. Збільшення.
- •29. Глибина фокуса.
- •30. Спотворення зображення.
- •31. Загальна характеристика детекторів.
- •32. Детектор типу сцинтилятор-фотопомножувач.
- •33. Твердотільний детектор.
- •34. Зразок у якості детектора.
- •35. Поняття про контраст, рівняння яскравості та порогове рівняння, їх аналіз.
- •36. Обмеження на зображення у рем.
- •38. Спектрометр із дисперсією за довжинами хвиль
- •39. Рентгенівський спектрометр із дисперсією за енергіями.
16. Вторинні електрони.
Рисунок 1.13 – Загальний енергетичний розподіл електронів, які емітують із твердого тіла
Ділянки 2 і 3 відповідають відбитим електронам, але у випадку ділянки 2 – лише тим, що втратили більше 40% своєї енергії. При низьких енергіях (менше 50 еВ) кількість емітованих електронів різко збільшується. Поява максимуму на 1-ій ділянці пов’язана із вторинною електронною емісією.
Вторинні електрони виникають унаслідок взаємодії первинного пучка, що має велику енергію, зі слабозв’язаними електронами провідності. Вони можуть утворюватися падаючим електронним пучком у момент падіння його на зразок, а також електронами, що покидають мішень.
Рисунок 1.14 – Можливі варіанти утворення вторинних електронів [2]: 1 - падаючий пучок; 2 - траєкторії електронів пучка у мішені; 3 - вторинні електрони, утворені при вході у мішень електрона пучка; 4 - вторинні електрони, утворені при виході з мішені відбитого електрона
Вторинні електрони, утворені відбитими електронами, проявляються на зображенні як шум.
Рисунок 1.15 – Характер залежності коефіцієнта вторинної електронної емісії від кута нахилу пучка
17. Безперервне рентгенівське випромінювання.
Гальмування електронів первинного пучка у кулонівському полі атома призводить до виникнення безперервного спектра гальмівного рентгенівського випромінювання з енергіями квантів від нуля до енергії пучка.
Довжина хвилі рентгенівського кванта обернено пропорційна енергії, яку втратив електрон, що збуджує квант, тому довжини хвилі квантів з максимальною енергією (Е0) будуть мати мінімальне значення; довжина хвилі (min), яка отримала назву короткохвильової межі, і є сталою для певної енергії пучка.
Рисунок 1.16 – Розподіл інтенсивності безперервного рентгенівського випромінювання
Аналіз залежностей, наведених на рисунку, показує:
- величина min змінюється залежно від енергії пучка (прискорюючої напруги), причому вона зміщується у бік більш короткої хвилі зі збільшенням Е0;
- інтенсивність безперервного рентгенівського випромінювання досягає максимуму при 1,5min, який зміщується у бік великих довжин хвиль при зменшенні Е0;
- інтенсивність рентгенівського випромінювання збільшується зі зростанням енергії пучка.
(1.20) зі зростанням енергії кванта Е його інтенсивність падає, а при збільшенні атомного номера матеріалу мішені – зростає.
Безперервне рентгенівське випромінювання створює фон у спектрах рентгенівського мікроаналізу. Інтенсивність фону має велике значення для визначення межі чутливості приладу. Задача дослідника і конструктора полягає в тому, щоб досягти малої величини фону. У деяких випадках, наприклад, при рентгенівському мікроаналізі біологічних об’єктів, інтенсивність фону має і корисну інформацію.
18. Механізм утворення характеристичного рентгенівського випромінювання.
Характеристичне рентгенівське випромінювання утворюється при переході атома зі збудженого у стаціонарний стан.
Рисунок 1.17 – Схема процесу збудження та релаксації атома: 1 - первинний електрон; 2 - вилучений електрон; 3 - перехід електрона; 4 - рентгенівський квант
19. Закон Мозлі
Мозлі встановив зв’язок між частотою лінії рентгенівського випромінювання та атомним номером мішені
де
=2,06·10-16с-1
– стала Рідберга;
– коефіцієнт, характерний для певної
серії випромінювання (для К-серії
=1, для
L-серії
=7,5);
– головне квантове число.
Рисунок 1.18 – Діаграма енергетичних рівнів атома
Ураховуючи те, що на оболонці не може бути більше 2n2 електронів, та принцип заборони Паулі (у даному енергетичному стані не може бути двох електронів з однаковим набором квантових чисел), К-оболонка не має підоболонок, L-оболонка має три підоболонки (L1 містить 2 електрони, L2 – 2 , L3 – 4 ), M-оболонка має п’ять підоболонок (M1 – 2, M2 – 2, M3 – 4, M4 – 4, M5 – 6), N-оболонка має сім підоболонок (N1 – 2, N2 – 2, N3 – 4, N4 – 4, N5 – 6, N6 – 6, N7 – 8).
Часто закон Мозлі записують у лінеаризованій формі
, (1.25)
де С – константа, яка має різне значення для кожної серії випромінювання.
Закон Мозлі читається наступним чином: корінь квадратний з частоти є лінійною функцією атомного номера елемента.
Визначивши довжину хвилі рентгенівського випромінювання або частоту, можна за допомогою закону Мозлі точно встановити атомний номер елемента.